和田トンネル融雪システムのエネルギー収支

1. はじめに

積雪地と非積雪地を結ぶ北近畿豊岡自動車道では, 冬期道路の安全対策として,2005年よりトンネル坑口 や橋梁などで地中熱を利用した融雪システムが導入さ れている.山間部に位置する和田トンネルは全長 (297m)が短く,従来,1000m以上のトンネル内極浅層 地中熱を利用した水平Uチューブ(HUT)だけでは十分 な採熱量を確保できないことが懸念された.そこで, HUTの補助熱源として深層地中熱を利用する掘削杭 熱交換システム(BHES)を併用した.

このような複数の採熱部を連結させたことが融雪 性能に如何なる影響を及ぼすのか,また降雪時に両者 の採熱性能がどのように機能するのかを明らかにする ことは、今後の複合的な融雪システムの設計において 重要となる.

そこで本研究では、和田トンネル融雪システムの熱 の流れを明らかにすることを目的に野外観測を実施し、 融雪舗装、HUT、BHESおよびそれらを結ぶ送水管の 熱収支について考察を行ったので、ここに報告する.

2. 融雪システムの概要および野外観測データ

Fig. 1は和田トンネル融雪システムの概要を示す. HUT(管径50mm, 往復500m)は、トンネル内の道路下 1.3mに4ユニット設置される.BHES(管径40mm, 深さ 100m)は、トンネル坑口付近に3ユニット設置される. 融雪舗装は明かり部(図中A, 210m²)とトンネル内部 (図中B, 280m²)にあり、その中に埋設された放熱管の 被り厚は、舗装の違いによって70mm(明かり部)およ び90mm(トンネル内部)と異なるが、配管ピッチはい ずれも150mmである.

冬期には融雪舗装で冷却された流体が送水管を通り,HUT(図中C),BHES(図中D)の順に循環する.HUT およびBHESでは周辺地盤からの熱供給により流体温 福井大学大学院工学研究科 学生会員 〇斉田 光 福井大学産学官連携本部 正会員 藤本 明宏 福井大学大学院工学研究科 正会員 福原 輝幸

度は上昇する.その後,暖められた流体は再び融雪舗 装に流入し,舗装体に熱を放出することで融雪が行わ れる.

なお,野外観測では送水管,HUTおよび融雪舗装の 出入口水温,地盤温度,舗装温度,流量および気象デ ータを10分間隔で求めた.

3. 野外観測結果

ここでは,2007年1月6日0:00から1月8日0:00の48 時間に亘り,和田トンネルの和田山側坑口付近で実施 した観測結果の一部を紹介する.

3.1 気象

Fig. 2は気温(T_a)および時間降雪強度(I_s)の経時変 化を示す.なお、図中の灰色はシステム稼動期間を示 す. $T_a(\bullet)$ は1月6日13:00に最高14℃となり、1月7日 2:00に最低-2℃となった.主な降雪は1月7日0:00と 同日8:00から9:00の2回であり、 I_s (実線)はそれぞれ 20mm/hと35mm/hであった.また、観測期間における 累積降雪深は0.14mであった.

キーワード:地中熱,融雪,熱収支,HUT,BHES

連絡先 : 〒910-8507 福井市文京 3-9-1 福井大学工学部建築建設工学科環境熱・水理研究室 TEL 0776-27-8595

3.2 路面温度

Fig. 3は深さ10mmにおける通常舗装温度(T_{pn})および融雪舗装温度(T_{ps})の経時変化を示す.

融雪システムは1月7日0:00の降雪とほぼ同時に 手動で稼動させた.この降雪により, $T_{ps}(\blacktriangle)$ および $T_{pn}(\bigcirc)$ は0℃近くまで急激に低下した.地中熱の供給 によって T_{ps} はすぐに上昇したのに対し, T_{pn} はそのま ま0℃付近を推移した.その後, T_{ps} は9:00頃の降雪 によって再び0℃近くまで低下したが,12:20頃から 急激に上昇した.これに対して,同図では判り難いが T_{pn} は12:50頃から上昇を開始した. T_{pn} の温度上昇率 は T_{ps} のそれに比べて低く, T_{pn} は観測終了まで T_{ps} より 約2℃低い状況にあった.

なお、システム停止時(1月6日)の間は、 T_{ps} と T_{pn} に殆 ど差はなかった.

4. 融雪システムの熱収支

Fig. 4はシステム稼動期間(1月6日23:00から1月8日 0:00)における融雪システムの熱収支を示す.図中の 数値の正は熱利得を,負は熱損失をそれぞれ意味する.

明かり部およびトンネル内部融雪舗装の熱損失は, それぞれ1445MJと797MJであった.当然ながらトンネ ル内部では降雪の影響を受け難いため,舗装の熱損失 は明かり部より小さい.なお,同図には示していない が,観測期間中の最大融雪フラックスは,明かり部で 219W/m²,トンネル内部で85W/m²であった.

HUTでの熱利得は2984MJであり,融雪システム全体が地盤から採集する熱エネルギーの87%を占めた.また,BHESとその前後の送水管を含む区間(図中(I))の 熱利得は50MJであった.これより,地中熱採取は主にHUTで行われることが知れる.

また,図中で示す(a)~(f)の送水管のうち,(a),(b), (d)および(e)の送水管では合計1197MJの熱損失があ った.これは融雪システム全体の熱損失の35%に相当 し,融雪能力低下の大きな要因となると思われる.

5. おわりに

本研究では、冬期に和田トンネルで野外観測を行い、 融雪システムの熱収支を調べた.その結果、本観測期 間では主にHUTで採熱が行われ、BHESの必要性は低 いことが明らかとなった.また、送水管の熱損失対策 の重要性が示唆された.

Fig. 2 気温および時間降雪強度の経時変化

Positive MJ : Heat gain, Negative MJ : Heat loss

Fig. 4 和田トンネル融雪システムの熱収支 (2007/1/6 23:00~2007/1/8 0:00)

今後は,融雪システムと周辺地盤における熱移動解 析を行い,融雪能力の評価および路面雪氷状態予測を 行う.