橋梁耐震補強工事における衝撃弾性波法よる無収縮モルタルの品質管理

リック㈱ 正会員 岩野 聡史

- 大田区役所 藤澤 康文
- (独) 土木研究所 正会員 森濱 和正

iTECS 技術協会 正会員 極檀 邦夫

リック㈱ 後藤 進一郎

1. はじめに

コンクリート構造物の維持管理対策における一手段として、様々な工法による補強が実施されている。補強 は構造物の力学的な性能を回復もしくは向上させることを目的とした対策であることから、実際の施工がこの 目的を満足するものであるのかを、品質管理として確認することは有効であると考えられる。筆者らは、衝撃 弾性波法によるコンクリート構造物の非破壊検査について研究をしているが¹⁾、衝撃弾性波法による品質管理 では、目視で確認できないコンクリート内部の状況を確認できることや構造物を直接評価できることなどから、 有効な管理方法になると期待される。今回は、橋梁の耐震補強工事での品質管理として、無収縮モルタルによ る増厚部を対象とし、圧縮強度の確認、既設部のコンクリートとの付着状況の確認をしたので報告する。

2. 測定内容

2. 1 測定対象

適用した現場は東京都大田区発注の宝来橋耐震整備工事である。 本工事では、災害時等の落橋防止対策として、橋脚を無収縮モル タル(デンカプレタスコン TYPE-1)により増厚し、ブラケットを 設置した(写真 1)。

衝撃弾性波法による品質管理は,無収縮モルタルによる増厚部 を対象とした。測定項目は,弾性波速度の測定による圧縮強度測 定と,増厚部と既設部のコンクリートとの付着状況の確認である。

2. 2 測定方法, 原理

(1)弾性波速度の測定による圧縮強度測定

本法は①コンクリート中の弾性波速度は、ポアソン比、密度が 一定であれば、弾性係数の平方根に比例すること、②弾性係数と コンクリートの圧縮強度には正の相関関係があること、①、②よ り、弾性波速度と圧縮強度には相関関係があることを利用して、 実構造物で測定した弾性波速度から圧縮強度を測定するものであ る²⁾。ここで、弾性波速度と圧縮強度の相関関係は、コンクリー トの配合によって変化する性質がある。これから、無収縮モルタ ルの打設時に円柱供試体を製作し、室内測定により両者の関係を 調査し、弾性波速度から圧縮強度を測定する強度推定式に設定し た。実構造物での弾性波速度の測定状況を**写真 2**に示す。弾性波 速度は橋脚 2 基 (P1, P2)の 2 側面 (A1 側, A2 側) について、1

写真1 ブラケット設置状況

写真 2 弾性波速度測定状況

写真3 付着状況調査状況

側面あたり5測線(計20測線)で測定し、圧縮強度を推定した。測定時の材齢は14日である。

(2) 増厚部と既設部のコンクリートとの付着状況の確認

測定状況を**写真3**に示す。モルタル補修部の表面を鋼球で打撃し、モルタル補修部の背面付近で反射する弾性波の深さを測定した。ここで測定される弾性波の反射深さは背面状況によって異なる性質がある³⁾。背面

キーワード:非破壊検査,衝撃弾性波法,施工管理,圧縮強度,付着状況 連絡先:〒143-0015 東京都大田区大森西 1-19-1 TEL 03-5762-2058 FAX 03-3765-5190 E-mail siwano@ri-k.co.jp に剥離等の空洞が存在する場合では、測定される弾性波の反射深さはモルタル補修部の背面までの厚さと一致 する。これに対し、背面が既設コンクリートと密着している場合では、測定される弾性波の反射深さはモルタ ル補修部の背面までの厚さよりも厚くなる。以上から、弾性波の反射深さの測定値と補修部の実際の厚さとを 比較することにより、モルタル補強部と既設部のコンクリートとの付着状況を確認した。測定点は各側面(計 4側面)について、縦方向に200mm間隔で3ライン、横方向に500mm間隔で12点の計36点とした。

3. 測定結果

3. 1 弾性波速度の測定による圧縮強度測定結果

全測定点での圧縮強度の測定結果を図1に示す。使用した無収縮モルタル(デンカプレタスコン TYPE-1) には環境温度と材齢から算出される標準強度が示されており、環境温度 20℃、材齢 14 日での標準強度は 56.6N/mm²となる。この標準強度を参考値とし、測定結果と比較すると、全測定点とも参考値を満足する結 果となった。実構造物での圧縮強度の測定結果は、配合、打設、養生などの工程を経た結果を反映するが、 適切な施工が実施されたことが確認された。

			<u>с прох —</u>	~ / /									
	測定点	12	11	10	9	8	7	6	5	4	3	2	1
	①実際の厚さ(mm)	108	105	105	100	92	93	88	87	88	90	95	100
	②Aライン測定厚さ(mm)	150	145	142	141	135	135	129	131	131	127	130	137
	③Bライン測定厚さ(mm)	155	148	144	144	134	130	129	132	137	129	136	136
	④Cライン測定厚さ(mm)	148	143	143	137	140	136	133	129	127	133	133	136
	比率(2/①)	1.39	1.38	1.35	1.41	1.47	1.45	1.47	1.51	1.49	1.41	1.37	1.37
	比率(③/①)	1.44	1.41	1.37	1.44	1.46	1.40	1.47	1.52	1.56	1.43	1.43	1.36
	比率(④/①)	1.37	1.36	1.36	1.37	1.52	1.46	1.51	1.48	1.44	1.48	1.40	1.36

素1 増厚部と既設部のコンクリートとの付着状況の確認結果例 (P1 極期 A2側)

3. 2 増厚部と既設部のコンクリートとの付着状況の確認結果

増厚部と既設部のコンクリートとの付着状況の確認結果の一例として, P1 橋脚 A2 側での測定結果を表 1 に示す。表 1 はモルタル補修部の各測定点での実際の厚さと 3 測定ライン×12 測定点での衝撃弾性波法による測定厚さとの比較を示したものである。過去の実験では、測定厚さが実際の厚さの 1.34 倍以上であれば、付着が確認されている³⁾。今回は、全測定点とも 1.35 倍以上となり、増厚部と既設部のコンクリートの間には空隙等の剥離は無く、付着していることが確認された。

4. まとめ

橋梁の耐震補強工事での品質管理として,無収縮モルタルによる増厚部を対象とし,非破壊検査手法である 衝撃弾性波法により,圧縮強度,既設部のコンクリートとの付着状況を確認した。その結果,圧縮強度,付着 状況とも問題が無いことが確認された。衝撃弾性波法による品質管理では,目視で確認できないコンクリート 内部の状況を確認できることや構造物を直接評価できることなどから,有効な管理方法になると期待される。

参考文献 1) 岩野他:衝撃弾性波法による新設構造物での圧縮強度推定方法の検討, コンクリート工学年次論文報告集, Vol.28, No.1, pp.1835-1840, 2006.7 2) リック, 土木研究所, 衝撃弾性波試験(仮称) iTECS 法による新設の構造体コンクリート強度 測定要領(案), 2007.4 3) 岩野他:衝撃弾性波法による補強コンクリートの付着状況評価に関する基礎実験, 第 59 回年次学 術講演大会講演概要集, Vol.59 部門V, PP159-160, 2004.9