圧縮性流体における流体要素の流量特性に関する研究

1. 緒言

近年, エネルギー供給の安定化・効率化への取り組 み,二酸化炭素排出による地球温暖化の対策への研究 1)及びそれに伴うインフラの構築などが実施されてい る²⁾. このような社会的背景の中, 代替エネルギーとな る天然ガスの需要が高まっている.また,地球環境へ の影響の少ないクリーンエネルギーとしての水素ガス の利用も期待されている³⁾.

そこで本研究では,等温化圧力容器 4及びオリフィス を用いて様々な圧縮性流体に関する放出実験を実施す る. 等温化圧力容器内の圧力応答より流量を求め、オ リフィスを通過する流量と比較し流量係数を算出する. これにより、オリフィスの流量特性を明らかにする.

2. 等温化圧力容器を用いた流量特性試験

実験は, Fig.1 に示す試験系内の圧力を減圧弁にて, 供給ゲージ圧力を 600[kPa(G)]に設定した.減圧した後 ボールバルブ-1 を開き,等温化圧力容器内に気体を充 填する. そして一定時間経過後, 等温化圧力容器下流 側のボールバルブ-2を開き、オリフィスを通過させ、 等温化圧力容器内の圧力応答を計測した.実験に用い たオリフィスの直径は **D**=2.0[mm]とした.

実験にて用いた圧縮性流体の種類と各々の物性値を Table.1 に示す.気体の種類はアルゴンガス、空気、都 市ガス, ヘリウムガス及び水素ガスを用いた. Table.1 は左から,基準状態の気体の密度 p₀[kg/m³],粘性係数 μ[Pa·s], 比熱比 κ, ガス定数 R[J/kg·K], 動粘性係数 v[m²/s]である.

2.1 等温化圧力容器からの質量流量

等温化圧力容器からの放出する質量流量 G[g/s]は状

東京工業大学	学生会員	○浅野訴	比一郎 ¹⁾
東京工業大学	非会員	香川	利春2)
東京工業大学	正会員	池田	駿介 ³⁾

(1)

$$PV = WR\theta$$
の全微分により求める. したがって,

$$G = \frac{dW}{dt} = \frac{V}{R\theta_{\perp}} \frac{dP_{\perp}}{dt}$$
(2)

となる. 等温化圧力容器内の変化が等温であると仮定 できるため、外気温度のを用いて算出する.式(2)より、 質量流量Gは等温化圧力容器内の圧力P1の時間に対す る微分値に比例することが示されている.

各流体に対する等温化圧力容器内の圧力応答を Fig.2 に示す.この図は、ガス定数 R の値が大きいほど放出 時間が短いことを示している.

等温化圧力容器内の圧力 P1の値と式(2)により算出し た放出質量流量 G の値を Fig.3 に示す. この図は, 圧力 に対する放出流量の微分値が各流体の密度に比例する ことを示している.

2.2 流体要素の通過質量流量

オリフィスを通過する質量流量 G_dを求める.比

Fig.1 Experimental apparatus for measuring pressure response inside Isothermal chamber with discharging (Pressure-response test).

Properties Gas	Density P ₀ [kg m ⁻³]	Molecular viscosity µ[10 ⁻⁵ Pa ⋅s]	Specific heat ratio <i>K</i>	Gas constant R [J (kg K) ⁻¹]	Kinetic viscosity ν [10 ⁻⁵ m ² s ⁻¹]
Argon	1.8	2.2	1.7	208	1.3
Air	1.3	1.8	1.4	287	1.4
LNG	0.82	1.1	1.3	451	1.3
Helium	0.18	2.0	1.7	2079	11
Hydrogen	0.09	0.8	1.4	4129	9.7

Table.1 Theoretical Properties of 5 compressible fluids with experiment. In normal-state(0[°C],101.3[kPa])

無次元数, 等温化放出法, 有効断面積 キーワード 流量係数,

連絡先 ¹⁾ 〒226-8503 連絡先 ²⁾ \mp 226-8503 連絡先 3) 〒152-8552 目黒区大岡山 2-12-1-M1-1

横浜市緑区長津田町 4259 R2-45 横浜市緑区長津田町 4259 R2-45

東京工業大学大学院理工学研究科博士課程 東京工業大学精密工学研究所教授 東京工業大学大学院理工学研究科教授

TEL 045-924-5485 TEL 045-924-5485 TEL 03-5734-2588

Fig.2 The experimental result of Pressure-response test; pressure response.

Fig.4 The experimental result of Pressure-response test; the relation between Reynolds number and flow coefficient.

熱比 κ 及び, オリフィスの有効断面積 $S_{e}[m^{2}]$ を用いて圧 力容器からの放出質量流量 G_{d} は,

$$\begin{cases} G_d^* = S_e P_1 \left(\frac{2}{\kappa+1}\right)^{\frac{1}{\kappa-1}} \sqrt{\frac{2\kappa}{R\theta_1(\kappa+1)}} & \frac{P_a}{P_1} \le b \\ \\ G_d = S_e P_1 \sqrt{\frac{2\kappa}{R\theta_1(\kappa-1)} \left\{ \left(\frac{P_a}{P_1}\right)^{\frac{2}{\kappa}} - \left(\frac{P_a}{P_1}\right)^{\frac{\kappa+1}{\kappa}} \right\}} & \frac{P_a}{P_1} > b \end{cases}$$

となる. ここに有効断面積 *S*_e及び臨界圧力比 b は以下 の式により求める.

(3)

$$S_e = C_f A = C_f \frac{\pi D^2}{4}$$

$$b = \left(\frac{2}{\kappa + 1}\right)^{\frac{\kappa}{\kappa - 1}}$$
(4)
(5)

次に,オリフィスを通過する気体の流速 u[m/s]及び Re 数を算出する.流速 u は以下の式で与える.

$$u = \sqrt{\frac{2\kappa}{\kappa - 1}} \frac{P_1}{\rho} \left[\left(\frac{P_a}{P_1} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right]$$
(6)

また,オリフィスを通過する流体の **Re** 数は以下の式で 与える.

Fig.3 The experimental result of Pressure-response test; the relation between pressure response and mass flow rate.

Fig.5 The experimental result of Pressure-response test; the relation between non-dimensional pressure response and flow rate.

$$Re = \frac{\rho u D}{\mu} \tag{7}$$

式(4)を式(3)に代入し, それと式(2)を連立することにより流量係数を算出する. その結果と式(7)で求めた Re 数の関係を Fig.4 に示す. この図より, 流れる流体によらず, 流量係数は Re 数に対して同一傾向を示す.

等温化圧力容器内の圧力 *P*₁ 及び放出質量流量 *G* を 各々無次元化し,両者の関係を Fig.5 に示す.この図よ り,圧縮性流体の物性によらず,圧力比は質量流量比 に対して同一傾向を示す.

3. 結言

等温化圧力容器とオリフィスを用いて、様々な圧縮 性流体に関する放出実験を実施した.流れる流体によ らず、オリフィスの流出係数は同一傾向を示すことを 実験により明らかにした.

参考文献

資源エネルギー省:エネルギー白書 2007,経済産業省(2007)
 渡辺,二見,千野,山岡:CO₂排出量を削減するエネルギー利用技術,日立評論,88-12,974/975 (2006)

3) 岡林, 武野, 平嶋, 千歳, 野中, 橋口:水素エネルギー利 用における安全性評価技術の開発, 三菱重工技報, 44-1, 17/19 (2007)

 4)川嶋,藤田,香川:等温化圧力容器を用いた空気の非定常 流量発生装置,計測自動制御学会論文集,34,1773/1778 (1998)

6-042