SFRC(鋼繊維補強高流動コンクリート)セグメントの掘進時の断面力特性

(株)大林組 フェロー 〇松田 隆(株)大林組 正会員 吉田 公宏

1. まえがき

SFRC (鋼繊維補強高流動コンクリート) セグメントは,鉄筋の量を減らすことができるうえ,外力要因 で微細なひび割れが生じる場合でも,従来セグメントに比べてひび割れ幅を低減できることから耐久性が大幅 に向上する.鋼繊維補強のメリットを生かし,配力筋は大幅に減少させることは可能であり,これまで,完成 時の安全性に関する確証実験も実施してきた.今回,掘進時の推進力と背面裏込注入圧に関する安全性を確認 するため三次元FEM解析を実施し,その断面力特性を検討した.本文は,この数値解析をもとに種々の外力条 件におけるセグメントの安全性を報告するものである.

2. 解析条件

解析には、三次元静的線形FEM解析を用い、地盤はモデル化せ ず外力で考慮し、セグメントは切羽からの3リングをシェル要 素でモデル化した.セグメントは、図心半径6m(厚0.4m,9分 割,幅2m,リング間角度10.9°)を仮定した.リング間とセグ メント間の継手ばねは表1のようにモデル化した.セグメント の要素分割は図1に示すように1リングあたり軸方向に4分割、円 周方向に66分割とした.坑口側の境界条件は図2に示す無限遠 のセグメントをせん断ばねで表現し支持させた.

荷重条件(解析ケース)は、ジャッキ推力、テール圧、裏込 圧および土水圧とし、表 2 に示す3ケース(各掘進状況をモデ ル化)を実施した.

表1 継手モデル化			表 2 荷重条件		(解析検討ケース)		
部位	方向	条件		1リング	2リング	3リン	備老
リング間	トンネル軸	剛性		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		グ	С ·· стту
	面内せん断	無し		ジャッキの堆力	テール	車 注 λ	掘進開始直後
	面外せん断	並進バネ	1	一部テール圧	匠	正	
セグメント 間	円周	剛性		ジャッキの推力+外成分 一部テール圧	テール 展 正 度	亩 注λ	堀 准開 <u></u> 他直從
	面内せん断	無し	2			ジャッキ推力の外側成分を考慮	
	面外せん断	剛性		ジャッキの推力+外成分	重 注 λ	十水正	
	軸回り	回転バネ	3	テール圧	正		ジャッキ推力の外側成分を考慮
90° q=1.0kN/m² 180° q=1.0kN/m² q=1.0kN/m² q=1.0kN/m²			ジヤ	$\frac{y \ge \theta_1}{T}$ $y \ge \frac{\theta_1}{T}$ $y \ge \frac{y}{T}$ $y = \frac{y}{T$	P _B P _U P _U P _L P _L P _L 2 ^{2m}	$\overline{\nabla} - \mathcal{H}E = \frac{1}{2}$	際注入圧 土水圧
				掘削開始		掘削約	终了 断面方向

図3 荷重ケース

図2 無限セグメントモデル

キーワード シールド,セグメント,掘進時安全性, 3次元 FEM 静的解析, 施工時荷重 連絡先 〒108-8502 東京都港区港南 2-15-2 ㈱大林組 TEL03-5769-1301 E-mail:matsuda.takasi@obayashi.co.jp

6-017

3. 検討結果

各ケースの変位性状を表3に, 掘進終了時 の変形状態を図4(ケース3)に示す.全体 に上方に変位し, 掘進開始から終了にかけ て12~16mm浮上する.また,最大変形量(潰 れ)は、掘進終了時で11.7mmであり、これ は内半径の0.1%であった.この変形量は掘 進の進行に伴い、4.1mm進展したことになる、 また,推進力の偏心(荷重S)の変位に与え る影響は小さいことがわかる.

トンネル外側および内側の円周方向の応力の性状を表4に示す.ま た,図5に掘進開始直後と終了時の応力度分布を示す.切羽側に引張 応力が生じ、その最大値は 3N/mm² であるが、この引張応力は引張強 度以下である.また、このような引張応力は、切羽側セグメントの概 ね半分の領域で発生しており、恒久的なものではないことも解る. 圧 縮応力度の最大値は坑口側で最大 15. 6N/mm²であり,施工時の荷重で あること、鋼繊維補強コンクリートであることを考慮すれば、コンク リートのひび割れは発生しないレベルと判断される.

4. おわりに

シールドセグメントの掘進時の安全性を三次元静的線形FEM解析に よって検討した.その結果,掘進終了後に変形は最大となるが,最大 応力度は掘削開始時に生じる. ただし, 問題となる引張応力は強度以 下になり、安全性は確保できると考えられる.

図5 最大主応力分布

6.0 3.0 0.0 -3.0 -6.0

-9.0 -12.0 -15.0 -18.0

表 3	最大変位量(mm)	

	頂部	底部	変形量
1	34.2	41.6	7.4
2	34.1	41.7	7.6
3	46.4	58.1	11.7

図4 変形図

表 4 最大応力度

	引張応	力(N/mm²)	圧縮応力(N/mm ²)		
	外側	内側	外側	内側	
1	1.9	1.8	-15.3	-15.3	
2	3.0	2.9	-15.3	-15.2	
3	2.6	2.4	-15.6	-15.4	