機械式定着工法を用いたせん断補強鉄筋の耐震性能の検討

(株)トーニチコンサルタント 正会員 ○小林雅彦

(独)鉄道・運輸機構 正会員 山東徹生

(独)鉄道・運輸機構 正会員 進藤良則

1. はじめに

せん断補強鉄筋は、部材のせん断破壊を防止する目的で兵庫県南部地震以降、軸方向鉄筋と同様に鉄筋量が増加している。そのため、部材によっては複雑な配筋となる場合があり、施工において鉄筋の組みにくさなどを生じるため、これを解消する目的で鉄筋端部に機械式定着具を備えたせん断補強鉄筋が各種開発されている。本報告は、先の「機械式定着工法を用いたせん断補強鉄筋のせん断耐力の検討」(以下、「せん断耐力の検討」という)に続き、定着具を備えたせん断補強鉄筋の耐震性能を比較するために行った交番載荷実験の結果について報告する。

2. 交番載荷実験

(1)供試体の概要

交番載荷実験で使用した供試体は大地震対応の部材変形性能に着目する観点から壁タイプとし、破壊形態が曲げ破壊となるよう設計した。本供試体は横方向に長い壁の中から幅1m部分を取り出し、中間帯鉄筋を単独型のせん断補強鉄筋へ置換したものである。そのため、供試体を外周する帯鉄筋は無く、配力鉄筋を軸方向鉄筋の外側に配置しかつ壁の両側で互いに連結しないことで、配力鉄筋による内部コンクリートの拘束効果を低減し、安全側に評価できることにした(図1)。

本供試体のせん断耐力 V_y は棒部材のせん断耐力 $V_y = V_c + V_s$,曲げ耐力 M_u は $M_u = A_s \rho_m f_{syd} (d-k/2)$ で算定した $^{1)}$ 。破壊形態は,曲げ耐力 M_u に達する際のせん断力 $V_{mu} = M_u/a$ を用いて $V_{mu}/V_y < 1.0$ の場合に曲げ破壊モト $^{\circ}$ 2)と判定されるが,本供試体では $V_{mu}/V_y = 0.21$ となった(各記号については「せん断耐力の検討」と同じ)。損傷 $V \cap V^2$ 1 は,設計上の主鉄筋降伏時の載荷点位置における水平変位(降伏変位)が $\delta_y = 20 \text{mm}$ のときを損傷 $V \cap V^2$ 1 の限界(曲げ降伏耐力時の水平力 $P_y = 253 \text{kN}$) とし,損傷 $V \cap V^2$ 2 の限界を $\delta_m = 85 \text{mm} (4.25 \delta_y)$ でこのときの最大水平力 $P_{max} = 256 \text{kN}$,損傷 $V \cap V^2$ 3 の限界を $\delta_m = 90 \text{mm} (4.5 \delta_y)$ 2 として設計した。その結果,供試体の鉄筋は SD390, $V \cap V \cap V^2$ 3 計計を表する $V \cap V^2$ 4 は、数のでは、数値は $V \cap V^2$ 5 は、数のでは、数値は $V \cap V^2$ 6 は、数のでは、数値は $V \cap V^2$ 7 になった。 は、数のでは、数値は $V \cap V^2$ 8 は、数のでは、数値は $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 に、数値は $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 に、数値は $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 に、数値は $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 には $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 には $V \cap V^2$ 9 になった。 は、数値は $V \cap V^2$ 9 には $V \cap V^2$ 9 には

	表1 配筋と鉄筋実強度(SD390)			
位 置	径	ピッチ	実強度**	
軸方向鉄筋	D25	7@125mm	466.5N/mm^2	
せん断補強鉄筋	D16	2組, 22@100mm	444.4 (456.1) N/mm ²	
配力鉄筋	D16	11@200mm	444.4 N/mm ²	

※() 内はCase4 を示す。

D25

2000

П

200

®

63+7@125+66=1000

図2 供試体配筋図

D16

表 2 コンケリートの実強度

供試体	実強度
スターラップ゜(Case 1)	$20.0N/mm^2$
矩形プレート(Case2)	$21.7N/mm^2$
T型拡径(Case3)	$22.2N/mm^2$
楔型プレート(Case4)	23.1N/mm ²

写真1 載荷実験の状況

キーワード: せん断補強鉄筋,機械式定着,交番載荷実験,耐震性能

連絡先:〒151-0071 東京都渋谷区本町1-13-3 TEL:03-3374-4095 FAX:03-3374-4744

(2) 載荷実験方法

載荷は軸力 300kN (0.75kN/mm²) を先行載荷した後、水平交番荷重 P を水平変位が δ_y の整数倍となるように加えた。水平交番荷重 P は、定着具側からフック側へ押す場合を正とした。載荷回数は $\pm 1 \, \delta_y$ は1回、 $\pm 2 \, \delta_y$ ~ $\pm 6 \, \delta_y$ は3回、 $\pm 7 \, \delta_y$ 以降は1回とした。交番載荷実験の状況を**写真 1**に示す。

表3 交番載荷実験の最大耐力

載荷方向	フック→定着具	定着具→フック
スターラッフ゜	-342kN (1.00)	320kN (1.00)
矩形プレート	-346kN (1.02)	332kN (1.04)
T型拡径	-343kN (1.00)	322kN (1.01)
楔型プレート	-349kN (1.02)	329kN (1.03)

3. 実験結果

荷重一変位曲線を図3に示す。プレート定着(Case2,4)はスターラップ(Case1)と比較して±5 δ yまでの耐力は同等で,耐力低下は1 δ y早かった。 T型拡径(Case3)の場合,±4 δ yまでは同等だが耐力低下は2 δ y早く,損傷レベル3の範囲では スターラップ(Case1)よりも耐力低下は大きかった。損傷レベル2までの範囲ではプレート定着とT型拡径,いずれも十分な耐力と変形性能を有することが分った。表3に最大耐力を示すが,いずれもスターラップの最大耐力以上となった。矩形プレート (Case2)の場合,定着具側の耐力低下はフック側より小さく,かぶりコンクリートの剥落もフック側より少なかった。 T型拡径 (Case3)の場合,定着具側の耐力低下はフック側より大きく,かぶりコンクリートの剥落もフック側より多かった。また,定着具側は内部コンクリートを拘束しているが,軸方向鉄筋の拘束は無く座屈長は長かった。楔形プレート(Case4)の場合,耐力低下とコンクリートの剥落が定着具側とフック側で同程度であり,定着具側とフック側ともに軸方向鉄筋を拘束し、座屈の節になっていた。

4. 考察

今回の供試体仕様のように、配力鉄筋を両面で連結しないまま最外縁へ配置し、交番載荷に伴う軸方向鉄筋のはらみ出しを抑制できないと、内部コンクリートの拘束が低下して変形性能が劣る³¹。 T型拡径(Case3)の耐力低下が早かったのはこの配力鉄筋の仕様と、部材側面への配置は適用範囲外であることが重なり、内部コンクリートの拘束が早期に開放されたことが原因の一つと考えられる。従って、T型拡径(Case3)を採用する際は内部コンクリートの拘束が継続できるよう、配力鉄筋の位置・連結方法の工夫により、軸方向鉄筋のはらみ出しを抑制する必要があると考えられる。一方、プレート定着(Case2,4)は軸方向鉄筋あるいは配力鉄筋へ掛けても、掛けた鉄筋が内部コンクリートの拘束を維持する効果が期待できるので、適用範囲外である部材側面への配置をしない限り、配筋上の配慮事項は少ないと考えられる。

5. まとめ

鉄筋端部にそれぞれ3種類の機械式定着具を持つせん断補強鉄筋について、壁タイプの供試体による交番載荷実験を行った結果、いずれも損傷レベル 2^2 までの範囲においては十分な耐力と変形性能を有することが確認できた。

参考文献

- 1) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説-コンクリート構造物,2004.4.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説-耐震設計,1999.10.
- 3) 小林ら:帯鉄筋の形状を変化させた RC 柱の交番載荷実験, コンクリート工学年次論文報告集, Vol21,No.3,1999.