レベル2地震動下におけるプレストレストコンクリート橋脚の動的非線形挙動

株式会社ドーコン	正会員(〕小林 竜太	株式会社ドーコン	正会員	猪股 勇希
株式会社ドーコン	正会員	工藤 浩史	株式会社ドーコン	正会員	井上 雅弘

1. はじめに

本研究では、既設橋梁のプレストレストコンクリート (PC)橋脚の大規模地震時挙動を把握することを目的として、 レベル2地震動下における動的挙動を非線形動的応答解析 により検証した。本数値解析では、別途実施した静的耐荷 力特性評価において、三次元非線形有限要素解析と整合性 が確認されたファイバーモデル解析を用いて検討を行った。

2. 解析対象橋脚の概要

本解析で対象とした橋脚は、円形中空断面を有する柱高 22.0mの単柱式 PC 橋脚(可動橋脚)である。本橋脚は柱軸 方向に7分割された直径 2,980mmの円環状の RC 製プレキ ャストセグメントを順次積み重ねて構築し、セグメント内 に配置された計 36本の PC 鋼棒を緊張することで柱軸方向 にプレストレスを導入して一体化を図った構造である。

3. 数値解析の概要

3.1 解析モデル

図-1には解析モデルを示している。 柱部材には材料非 線形を考慮可能なファイバー要素を、フーチング部材には 弾性梁要素を、柱天端から慣性力作用位置までは剛体要素 を用いてモデル化を行った。なお、上梁重量および上部構 造分担重量は、それぞれ部材の重心位置節点に対して集中 質量として与えている。本解析で用いたファイバー要素は Timoshenko 梁理論に基づいた曲げによるせん断変形を考慮 した3節点梁要素である。境界条件はフーチング下端を完 全固定とした。材料構成則は、コンクリート要素に対して はコンクリート標準示方書【耐震性能照査編】に基づいた 弾塑性破壊モデルを適用した。ここで、示方書では簡略化 してコンクリートの引張強度を無視しているが、本解析で は考慮するものとした。PC 鋼棒および鉄筋要素に対しては、 それぞれ Tri-linear および Bi-linear モデルを採用し、その履 歴特性にバウシンガー効果を考慮するものとした。表-1 および表-2には各使用材料の力学的特性値を示している。

3.2 地震応答解析法および入力地震動

地震応答解析には直接積分法に基づいた時刻歴応答解析 法を適用した。数値積分には Newmark β 法 (β =1/4)を用い,

図-1 三次元骨組要素モデル(要素分割状況)

表-1 コンクリートの力学的特性値

材料	圧縮強度 f' _c (MPa)	引張強度 <i>f_i</i> (MPa)	弹性係数 <i>E_c</i> (GPa)	ポアソン比
コンクリート*1	50.0	3.12	33.0	0.2
コンクリート*2	30.0	2.22	28.0	0.2
コンクリート*3	21.0	1.75	23.5	0.2

*1:プレキャストセグメント,*2:フーチング,充填コンクリート *3:根巻きコンクリート

表-2 鋼材の力学的特性値

材料	降伏強度 fy(MPa)	弹性係数 E_s (GPa)	ポアソン比
PC 鋼棒	1,080.0	200.0	03
鉄筋	345.0	200.0	0.5

キーワード : プレストレストコンクリート橋脚, 非線形動的応答解析, ファイバーモデル, レベル2 地震動

連絡先:〒004-8585 札幌市厚別区厚別中央1条5丁目4番1号,株式会社ドーコン【構造部】,TEL:011-801-1540

時間刻みは 1/100 秒と設定した。なお,粘性減衰は,第1次 固有振動数 (f₁=1.52Hz) に対して h=2.0%を与えた剛性比例 型減衰によって考慮した。応答解析に用いた入力地震波形は, 道路橋示方書V【耐震設計編】で規定されているレベル2地 震動における I 種地盤用の標準加速度波形とし,これをフー チング下端節点に入力した。また,橋脚の残留変位量を適切 に評価するために,動的応答解析において入力した地震動が 終了した後に 10 秒間の自由振動解析を行っている。

4. 地震応答解析結果および考察

表-3には応答解析によって得られた慣性力作用位置に おける応答値を一覧にして示している。また,図-2には 応答波形の一例として,タイプII地震動入力時の慣性力作 用位置における応答波形を示している。表より,最大応答 加速度および最大応答変位に着目すると,タイプI地震動 入力時ではそれぞれ577.6gal,100.8mmであり,タイプII地 震動入力時では993.1gal,222.9mmであった。また,入力地 震波形の継続時間終了後に10秒間の自由振動解析を行って 評価した残留変位量は,各地震動に対してそれぞれ0.6mm, 3.2mm であり,プレストレスの効果によって残留変位量は いずれの入力地震動の場合にも小さいことが確認された。

一方, PC 鋼棒要素の損傷状態に着目すると,タイプ I 地震 動入力時に対しては降伏には至らないことが確認された。

図-3には柱基部および根巻きコンクリート直上の要素 における応答曲げモーメントー応答曲率関係を示している。 ここでは、紙面上の都合により、タイプII地震動入力時に 限定して示すものとする。図中点線はPC 鋼棒が第1降伏点 に到達する時点の曲率値を示している。図より、いずれの 着目断面においてもその復元力特性は PC 構造特有の原点 指向型を呈していることが分かる。また、根巻きコンクリ ート直上要素の応答曲率が柱基部と比較して大きく、根巻 きコンクリート直上近傍で損傷程度が大きくなる傾向にあ る。しかしながら、PC 鋼棒の初期緊張力の低下が懸念され る第2降伏点には至っていないことから、大規模地震時に おける耐震安全性は概ね確保されているものと考えられる。

以上より,本PC橋脚の大規模地震時における動的応答特 性は,導入プレストレスの効果によってその復元力特性は 原点指向型に近づき,一般的な RC橋脚と比較してエネル ギー吸収性能は低下する傾向にあるが,一方で,残留変位 量を小さくすることが可能であることから PC橋脚は地震 後の復旧性能に優れた構造であるものと考えられる。

5. 結論

本研究では、既設 PC 橋脚のレベル2 地震動下における動

表-3 動的応答解析における応答値一覧

1百 日	入力地震動(レベル2地震動)			
	タイプ I	タイプⅡ		
最大応答加速度 (gal)	577.57	993.05		
最大応答変位 (mm)	100.84	222.93		
残留変位 (mm)	0.56	3.18		
PC 鋼棒の降伏状態	降伏しない	第1降伏点到達		

図-3 応答曲げモーメントー曲率関係(タイプⅡ地震動)

的挙動を検証することを目的として、ファイバーモデルを 用いた動的応答解析を実施した。検討の結果、本 PC 橋脚 はプレストレスの効果によって復元力特性は原点指向型に 近づくため、エネルギー吸収性能は RC 橋脚と比較して低 下する傾向にあるが、残留変位を小さくできることから地 震後の復旧性能に優れた構造であることが明らかとなった。 参考文献

2002年制定コンクリート標準示方書【耐震性能照査編】
日本道路協会:道路橋示方書・同解説V【耐震設計編】