非線形有限要素解析によるプレストレストコンクリート橋脚の耐荷力特性評価

株式会社ドーコン	正会員()関下 裕太	株式会社ドーコン	正会員	小林 竜太
株式会社ドーコン	正会員	工藤 浩史	株式会社ドーコン	正会員	井上 雅弘

1. はじめに

本研究では、柱軸方向にプレストレスを導入して一体化 を図った既設プレストレストコンクリート橋脚を対象とし て、その耐荷力特性や終局時の破壊形態等の基礎的な耐荷 挙動を把握することを目的として材料非線形性を考慮した 数値シミュレーション解析を実施した。なお、本検討では、 三次元有限要素解析を用いた検証を前提としたが、簡易な ファイバーモデル解析の適用性についても検討を行った。

2. 解析対象橋脚の概要

本解析で対象とした橋脚は、円形中空断面を有する柱高 22.0mの単柱式のプレストレストコンクリート(PC)橋脚で ある。本橋脚は柱軸方向に7分割された円環状のRC製プ レキャストセグメントを順次積み重ねて構築し、セグメン ト内に配置された計36本のPC鋼棒を緊張することで柱軸 方向にプレストレスを導入して一体化を図った構造である。

3. 解析モデルの概要

図-1(a)には三次元有限要素モデルを示している。コン クリート要素には8節点ソリッド要素,PC鋼棒および鉄筋 要素には2節点埋め込み鉄筋要素を用い、コンクリートと 鋼材間はいずれも完全付着を仮定した。コンクリートの材 料構成モデルは、圧縮応力場には弾塑性理論に立脚したモ デル、引張応力場には破壊力学を考慮した多方向固定ひび 割れモデルを適用した。図-2、図-3にはそれぞれコン クリートおよび鋼材の応力-ひずみ関係を示している。コ ンクリート要素にはDrucker-Pragerの降伏基準を用い、内部 摩擦角は30度を仮定した。PC鋼棒要素はコンクリート標 準示方書【構造性能照査編】に準拠したTri-linearモデルと し、鉄筋要素には降伏後の塑性硬化(2次勾配:弾性係数の 1/100倍を設定)を考慮したBi-linearモデルを適用した。な お、鋼材はいずれも von Misesの降伏基準に従うものとした。

図-1(b)には三次元骨組要素モデルを示している。柱部 材にはファイバー要素を、フーチングには弾性梁要素を適 用し、柱天端から荷重載荷点位置までは剛体要素を用いた。 各材料の応力-ひずみ関係は、鋼材要素は三次元有限要素 モデルと同じであるが、コンクリート要素は別途動的挙動

検証を実施することから,コンクリート標準示方書【耐震 性能照査編】に準拠した構成モデルを適用した。載荷荷重 は,自重,軸圧縮力およびPC鋼棒への有効プレストレスを 初期応力として導入した後に,載荷点位置を水平方向に 300mm強制変位させる変位制御方式の増分解析を実施した。

キーワード : プレストレストコンクリート橋脚, 耐荷力特性, 非線形有限要素解析, ファイバーモデル解析 連 絡 先 : 〒004-8585 札幌市厚別区厚別中央1条5丁目4番1号, 株式会社ドーコン【構造部】, TEL: 011-801-1540

4. 解析結果および考察

4.1 水平荷重-水平変位関係

図-4には載荷点位置における水平荷重-水平変位関係 を三次元有限要素モデルとファイバーモデルで比較して示 している。図より,水平変位約 50mm 時点から剛性が顕著 に低下し始めたが,急激な荷重低下は見られず,安定した 荷重-変位関係が得られていることが分かる。また,三次 元有限要素モデルとファイバーモデルを比較すると,水平 変位 50mm 付近において若干の差異が見受けられるものの, 両者は比較的良く一致することが確認された。従って,本 PC 橋脚の曲げ耐荷挙動は比較的簡便なファイバーモデル 解析によっても概ね評価可能であるものと判断される。

4.2 柱軸方向における水平変位分布

図-5には PC 鋼棒降伏時および解析終了時における柱 軸方向に関する水平変位分布を各解析モデルで比較して示 している。図より、いずれの載荷レベルにおいても両者は 概ね良く一致しており、また、橋脚基部の根巻きコンクリ ート上面を境界として変形曲率が大きく変化しており、根 巻きコンクリートによる変形抑制効果が確認される。

4.3 コンクリート要素および PC 鋼棒要素のひずみ分布

図-6には三次元有限要素モデルにおけるコンクリート 要素および PC 鋼棒要素の鉛直方向ひずみ分布を示してい る。図中,赤色(橙色)の領域ではコンクリート要素では ひび割れが開口した状態を,PC 鋼棒要素では降伏した状態 を表現している。図より,コンクリート要素では柱基部か ら約 4D(D:断面直径)の領域で水平方向の曲げひび割れが 分散して発生しており,本橋脚は曲げ破壊によって終局状 態に至るものと推察される。一方,PC 鋼棒要素では柱基部 および根巻きコンクリート直上で降伏が生じているが,根 巻きコンクリート直上の方が柱基部と比較して降伏領域が 広いことが確認される。また,図-7には解析終了時にお ける柱基部コンクリート要素の断面内ひずみ分布を示して いる。図より,いずれのモデルも類似したひずみ分布を示 しており,赤色(橙色)のひび割れの領域は断面内中立軸 よりも圧縮側にまで発生・進展していることが確認できる。

5. 結 論

検討の結果,本PC橋脚は安定した荷重-変位関係が得ら れ、曲げ破壊によって終局状態に至るものと推察される。 また、三次元有限要素モデルとファイバーモデルを比較す ると、両者の結果は比較的良く一致することが確認され、 本橋脚の曲げ耐荷挙動に関しては簡便なファイバーモデル 解析によっても概ね評価可能であることが明らかとなった。

