簡易断熱による断熱温度上昇特性の推定法

法政大学大学院 学生会員 小俣 貴洋 法政大学 勇希 藤森 東日本旅客鉄道株式会社 遠藤 恭世 法政大学 正会員 溝渕 利明

1.研究目的

コンクリート構造物において,セメントの水和熱に起因する温度応力によって 生じる温度ひび割れは、コンクリート構造物の耐久性を損なう場合がある。した がって,耐久性の点から,温度ひび割れを制御することは重要な課題であり,ひ び割れ発生の要因となるコンクリート構造内部の温度分布や履歴を正確に把握 しておく必要がある。そのためには、断熱温度上昇特性など、熱特性を把握する 必要がある。

コンクリートの断熱温度上昇特性を把握するためには,実際の配合条件と同様 のコンクリートを用いて,断断熱温度上昇試験(以後,断熱試験と称す)を行う必 要がある。しかし、断熱温度上昇試験装置は大型かつ高価なものであり、施工現 場で簡便に使用できるものではない。そこで,本研究では入手が容易で,比較的 安価な発泡スチロール型枠を用いた簡易断熱温度上昇試験(以後,簡易断熱試験 と称す)によりコンクリートの断熱温度上昇特性を推定する事を目的として,検 討を行った。

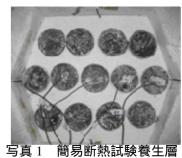


写真 2 断熱温度上昇試験機

2.検討の概要

2.1 試験方法

(1)簡易断熱温度上昇試験

本試験は、コンクリートの断熱温度上昇特性を把握するために 写真1に示すように, 簡易断熱養生槽に発泡スチロールを用い,槽内に発砲ビーズを敷き詰め,簡易的な断熱 状態として行った。供試体は紙製型枠(100×200mm)に打込み,水分の逸散を防ぐため に供試体上面を密封し, 封緘状態とした。温度測定は, 供試体中央や断熱材等を熱電対 を用いて行った。セメントは普通ポルトランドセメントを使用し,合計6回の試験を行 った。試験測定期間は既往の研究を基に 10~14 日とした。

図1 簡易断熱試験 解析モデル(断面図)

(2)断熱温度上昇試験

本試験は断熱温度上昇試験装置を使用して行った。本装置は、試験体の温度に追随して試験 体周辺の温度を同調させる。つまり、外気温の影響を受けない状態でのコンクリートの温度上 昇を測定するための装置である。容量は 5 (小型カロリーメータ)と 50 (大型カロリーメータ) のものを使用した。本試験は,簡易断熱試験の4~6回目と同配合のコンクリートを用いた。 2.2 解析方法

本検討では,試験結果を用いて断熱温度上昇特性の算定を行った。解析の対象は簡易断熱試 験・断熱試験供試体とした。図1及び図2にメッシュレイアウトを示す。断熱温度上昇式は 以下のものを使用した。

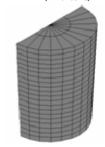


図2 断熱試験 解析モデル

 $T = K |1 - \exp\{-\alpha (t - t_0)^{\beta}\}|$ (1)

K:終局断熱温度上昇量():温度上昇に関する定数:温度上昇に関する定数

t₀: 時間遅れ(日) t: 材齢(日)

キーワード:断熱温度上昇量,温度解析,水和熱

連絡先:〒184-8584 東京都小金井市梶野町 3-7-2 Tel 042-387-6286

3.試験結果

簡易断熱試験の結果を表1に示すとともに,簡易断熱試験と 断熱試験との比較結果の一例を図3に示す。表1より最高温度 到達時間は外気温の影響を受ける結果となった。図3より,断 熱試験と簡易断熱試験とを比較した場合,温度上昇時では両者 はほぼ一致しているものの、断熱試験の方が簡易断熱試験より 最高温度到達時間は遅くなり,最高温度も高くなる結果となった。

簡易断熱試験結果を基に同定した断熱温度上昇式の各係数を 表 2 に示す。また,各係数と単位セメント量の関係を図 4 に示 すとともに,単位セメント量300kg/m3での打込み温度との関係 を図5に示す。さらに,簡易断熱試験の解析結果と大型・小型 カロリーメータの試験結果を比較した結果の一例を図6に示す。 図4より,単位セメント量の増加に伴い,終局断熱温度上昇量は 増加しているが、温度上昇速度は単位セメント量の変化による影 響をほとんど受けない結果となった。また、図5より、打込み温 度の上昇に伴い,終局断熱温度上昇量は減少し,温度上昇速度は 大きくなる結果となった。図6から,簡易断熱試験の解析値と小 型カロリーメータを用いた断熱試験の実験値はほぼ同様な値をと ることが確認できた。このことより,断熱温度上昇式を簡易断熱 試験から導ける可能性があると考えられる。しかし、簡易断熱試 験の解析値と大型カロリーメータを用いた断熱試験の実験値は一 致しない結果となった。また,試験自体は簡易に行えたが,同定 解析では断熱温度上昇式を簡便に求めることができなかった。

4.まとめ

簡易断熱試験を用いて断熱温度上昇特性を把握できる可能性を 見出した。今後は,簡易断熱試験の測定精度の向上・測定方法の 改善,解析時間の短縮など解析方法の最適化などが必要と思われ る。また,小型カロリーメータと大型カロリーメータの実験値に 乖離がみられることから,今後の課題として検討していく必要が ある。

<参考文献>

1)吉武勇,中村秀明,浜田純夫,永井泉治:マスコンクリートの 簡易断熱温度上昇推定方法の提案,土木学会第53回年次学術講演 会講演概要集,v-353,pp.706-707,1998

2) 神代泰道,一瀬賢一,川口徹:マスコンクリートの温度ひび 割れ発生に関する解析的研究,コンクリート工学年次論文集,vol.29,No.2,2007

表1 実験の諸値

試験	打ち込み日	単位セメント 量(kg/m³)	最高温度 (℃)	最高温度到達 時間(h)	積算温度 (℃·day)
108	6月19日	327	52.7	25.8	596
2回目	8月13日	400	62.0	24.5	651
308	10月11日	300	50.5	27.8	437
408	11月8日	300	46.1	31.5	395
5回目	11月22日	300	39.6	40.8	358
6回目	12月5日	300	39.8	41.3	361

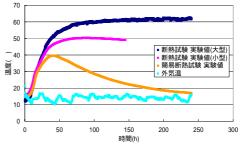


図3 温度履歴

表 2 断熱温度上昇特性の各係数

試験	K	α	β	to
108	37.4	2.00	0.8	0.22
208	44.5	2.40	0.8	0.15
308	36.5	2.00	0.9	0.20
408	37	1.60	1.0	0.30
508	37	1.20	1.1	0.30
608	37.3	1.15	1.0	0.30

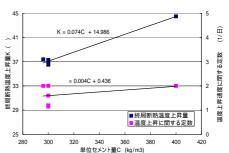


図 4 単位セメント量と断熱温度上昇式

の各係数の関係

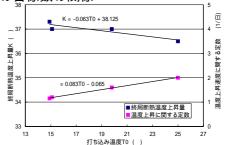


図 5 打ち込み温度と断熱温度上昇式の 各係数の関係

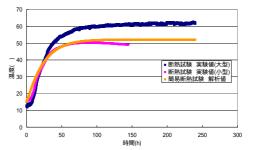


図 6 簡易断熱試験解析値と断熱試験の 実験値の比較