水セメント比の異なるポーラスなセメント系材料の溶脱挙動に及ぼす移流流速の影響

群馬大学大学院	学生会員	○小野	正博
群馬大学大学院	正会員	半井	健一郎
群馬大学大学院	正会員	李春	系鶴

1. はじめに

コンクリートの劣化現象である Ca 溶脱は一般構造物の 耐用年数において問題視されることは稀である.しかし, 放射性廃棄物の処分施設に使用されるセメント系材料 や,ポーラスコンクリート,セメント改良土などのポーラス なセメント系材料においては溶脱の影響を検討する必要 があると考えられる.既往の研究より,溶脱の現象の予測 手法として, Buil らによる Ca の固液平衡モデル¹¹などが提 案されている.セメント改良土など透水係数が大きい材料 では,移流条件によっては,固液平衡関係が満たされな い可能性が報告²⁾されている.また,著者らはポーラスな セメント系材料における W/C の影響を検討してきた^{3),4)}. 本研究では,移流流速の違いが W/C が異なるポーラス なセメント系材料の溶脱挙動に及ぼす影響について実 験的評価を行なった.また,W/C の違いが溶脱劣化の 進展に及ぼす影響についても検討した.

2. 実験概要

定水位透水試験による通水法とし,一定時間間隔で 流出溶液をサンプリングした.流出溶液は原子吸光分 光光度計により Ca 濃度を測定した.動水勾配を変化さ せることで,移流条件を変化させた.

実験に用いた供試体の実験条件を表-1に示す. W/Cを25,50,100%の3水準に設定し、それぞれ移流流 速を3段階に変化させた3シリーズ実験を行った.Si

表一1 供試体条件

シリーズ名	供試体名	W/C	動水勾配	空隙率	平均移流流速
		(%)	(m/m)	(%)	(×10 ⁻³ cm/sec)
Si-Hシリーズ	Si25H	25	0.05	21.6	48.7
	Si50H	50	0.10	22.4	44.4
	Si100H	100	0.10	21.2	28.0
Siシリーズ	Si25	25	0.04	20.9	7.5
	Si50	50	0.03	21.5	5.3
	Si100	100	0.04	21.1	9.0
Si-Lシリーズ	Si25L	25	0.03	21.1	0.5
	Si50L	50	0.02	20.7	0.4
	Si100L	100	0.02	20.2	0.2

シリーズを基準として、動水勾配の高いものを Si-H シリ ーズ、低いものをSi-Lシリーズとした.Siシリーズではシリ ーズ間流速が一定となるように動水勾配を調節した.供 試体はφ100×200mm の円柱供試体とした.骨材からの 溶脱の影響を排除するために,骨材には相馬産硅砂 3 号を使用した.

3. 実験結果

3.1 溶脱 Ca 濃度

溶脱の劣化を評価するにあたり, 溶脱 Ca 濃度に対する 固相 Ca 濃度の関係を W/Cごとに図-1, 2, 3に結果を示 す. 各図中には Buil らが提案する Ca の固液平衡モデル ¹⁾を示した. なお, 固相 Ca 中の Ca(OH)₂ が 30%であると 仮定した. 固液平衡モデルと本試験結果を比較すると 本試験の移流流速の範囲内では非平衡状態にあること がわかる. 移流流速が大きいほど平衡曲線から乖離し, 移流流速が小さいほど平衡曲線に漸近することが確認 できる. 図-3において, 最も移流流速の小さい Si100L

キーワード 溶脱,水セメント比,移流流速,ポーラスコンクリート,セメント改良土 連絡先:〒376-8515 群馬県桐生市天神町 1-5-1 TEL 0277-30-1613

では比較的平衡状態に近いことがわかる.

溶脱挙動における W/C の影響を比較するため, 図-4 に流速がほぼ同一である Si シリーズの結果を示す. 溶 脱初期では, W/C によらず溶脱挙動がほぼ一致してい ることがわかる. 溶脱が進展することで, W/C が大きいほ ど液相 Ca 濃度は高濃度を維持して溶脱している.

3.2 単位通水量,単位時間あたりの Ca 溶脱量

通水開始から通水 30L における平均溶脱量と移流流 速の関係を図-5に示す. W/C によらず移流流速が速 いほど平均溶脱量が多いことが確認できる. 同様に平均 溶脱濃度と移流流速の関係を図-6に示す. 移流流速が 速いほど平均溶脱濃度は低くなることが確認できる. こ れは移流流速が速いほど,作用水が供試体中に滞留す る時間が短いためであると考えられる. しかし, 図-5に 示すように移流流速が速いほど溶脱してくる Ca 量は多く なることから,流速の増加に伴う溶脱濃度の低下よりも, 流量の増加が支配的であることがわかる.

3.3 溶脱進展状況

溶脱後の供試体に対して,溶脱の進展状況を確認す るために EPMA 分析を行なった. 観察範囲は 500µm 角と し,分析に使用した供試体は W/C100%,溶脱割合 23%のものである. Ca/Si モル比の濃度分布を図-7に 示す. 水と接する粗大空隙界面でCa/Si濃度分布が低く なっていることがわかる. この結果からポーラスなセメント 系材料における溶脱は,粗大空隙界面から徐々に進展 することわかる. 通水軸方向の溶脱進展状況については 著者らが過去に報告したように,供試体上部と下部の残 存する Ca 量の差は小さく,巨視的には均一に溶脱して いた⁴⁾が,今回の分析により,微視的な範囲での溶脱は 不均一であることがわかった.

3.4 W/C が溶脱に及ぼす影響

EPMA 分析の結果を踏まえて図ー4での結果を考察

すると、W/Cによらず溶脱初期では、粗大空隙界面近傍 からの溶脱にとどまっているために溶脱挙動の差が顕著 にはならなかったものと考えられる.しかし、溶脱が進展 するにつれ W/C25%ではセメント硬化体細孔構造が密 であることから、溶脱劣化範囲の拡大が高 W/C に比べ 小さく溶脱 Ca 濃度が低くなると考えられる.一方, W/C100%ではセメント硬化体細孔構造が粗であることか ら、溶脱劣化範囲の拡大が大きく、高濃度を維持して溶 脱したと考えられる.

4. まとめ

W/C が大きく,移流 流速が速いほど溶脱 劣化の影響を受けや すく,移流流速の影響 により Ca の固液平衡 関係は非平衡になり, 移流流速が小さいほど 固液平衡曲線に漸近 することを確認した.

【参考文献】

Si100(溶脱割合 23%) 図-7 Ca/Si 濃度分布

- 1)Buil,M.,Revertegat,E.and Oliver,J.:A model of the attack of pure water or undersaturated lime solutions on cement,ASTM STP 1123,pp227-241,1992.
- 2)咲村隆人ほか:マルチスケール空隙モデルに基づくカ ルシウムイオン溶脱解析:第59回セメント技術大会講 演要旨, pp.46-147, 2005.
- 3)仲地本貴ほか:水セメント比の異なるポーラスなセメント 系材料の移流条件下におけるCa溶脱,第62回年次学 術講演会講演概要集,pp.796-770,2007.
- 4)小野正博ほか:ポーラスなセメント系材料の移流条件 下における溶脱劣化評価,第 35 回土木学会関東支 部技術発表会講演概要集, V-030,2008.