高炉スラグ微粉末およびシリカフュームを用いた高強度コンクリートの耐久性と収縮特性

- 長岡技術科学大学大学院 学生会員 尾口 佳丈
 - 長岡技術科学大学 正会員 下村 匠

1.はじめに

実験室レベルならびに特別に入念に施工される実 構造物には,高強度コンクリートを適用することは 十分可能である.今後,一般の土木構造物に高強度 コンクリートを簡単に安定して適用できるようにす ることが課題である.

本研究は,一般の生コンプラントおよび2次製品 工場で製造可能な,高炉スラグ微粉末とシリカフュ ームを使用した高強度コンクリートの開発を目的と している.そのためには,フレッシュ時,若材齢時, 硬化後を通じて,使用材料の変動や製造方法の影響 を受けにくく,一定以上の各種性能が安定して確保 できるコンクリートでなければならない.

本報では,収縮特性,収縮ひび割れ抵抗性,塩分 浸透抵抗性,凍結融解抵抗性の物性試験,および細 孔構造を測定した結果を報告する.

2.試験概要

表 - 1 に使用材料を,表 - 2 コンクリートの配合を 示す.配合は6種類である.セメントは普通ポルト ランドセメントを用いた.混和材としてシリカフュ ームを2種,高炉スラグ微粉末を2種用いた.配合 O-1,O-2 は普通コンクリート配合,配合H-1,H-2 は 高炉スラグ微粉末 BB1とシリカフューム SF1を用い た普通強度配合,配合H-3,H-4 は混和材に高炉スラ グ微粉末 BB2とシリカフューム SF2を用いた高強度 配合とした.高炉スラグ微粉末の置換率は内割り置 換で40%,シリカフュームは外割り置換5%とした.

3.試験項目および試験方法

耐久性試験と収縮試験の試験項目および試験水準 を表 - 3 に示す.凍結融解抵抗性試験は JISA 1148 に 準拠して行い,電気泳動法試験は JSCE-G 571-2003 に準拠して行った.耐久性試験および細孔径分布測 定のための供試体は,材齢1日で脱枠ののち27日間 水中養生を行った.配合 O-1,O-2 は水中養生後16 週間気中養生を行い,配合 H-1,H-2 は水中養生後

表 - 1 使用材料

佰日	材料	記문	密度	密度 比表面積	
<u>ж</u> ц			q/cm ³	cm ² /g	
セメント	普通ポルトランドセメント	С	3.15	3310	-
細骨材	陸砂	S	2.58	-	FM:2.81
粗骨材	陸砂利	G1	2.62	-	
租門初	砕石	G2	2.66	-	FM:6.80
混和材	シリカフューム	SF1	2.50	14000	-
		SF2	2.70	159000	-
	宮柏フラガ海松士	BB1	2.88	4000	-
	回れ入りが成れた	BB2	2.88	6000	-
混和剤	AE剤	AE	アルキルエー	テル系陰イオン	ノ界面活性剤
	AE減水剤	AD	リグニンスルホン	ノ酸化化合物とポリ	オールの複合体
	高性能AE減水剤	SP	ポリカルボ	ン酸エーテノ	レ系化合物

表 - 2 配合

친수	設計基準強度	W/B	空気量	単位量(kg/m ³)								
	(N/mm ²)	(%)	(%)	W	С	S	G	BB	SF	AD	AE	SP
0-1	24	54		166	308	748	1051	•	1	3.08	•	•
0-2	40	40		173	433	565	1116	•	1	4.33	1.732	•
H-1	24	50	4.5	166	199	703	1051	133	17	5.569	2.092	•
H-2	40	40	4.5	171	257	558	1095	171	21	4.786	2.696	•
H-3	80	25		166	398	631	833	266	33	-	•	4.88
H-4	100	20		170	510	545	739	340	43	-	-	7.536

表-3 試験項目・試験水準

配合	水銀圧入法	凍結融解抵抗性試験	電気泳動法	一軸拘束収縮試験	自由収縮試験
0-1					
0-2			-	-	-
H-1			-	-	-
H-2					
H-3					
H-4					

表 - 4	4 圧	縮強度試験結果	Ę
	피스	圧縮強度	
	AU CI	(N/mm ²)	
	0-1	35.07	
	0-2	36.46	
	H-1	35.39	
	H-2	44.69	
	H-3	88.03	
	H-4	102.31	

12 週間気中養生を行い,配合 H-3,H-4 は水中養生後に試験を開始した.細孔径分布測定用の試料は 100×200mmのコンクリート供試体を10mm幅に切断したのち3~5mmに砕いたものを用いた.

自由収縮供試体は 100×100×400mm の型枠に打 設後,室温20,湿度 60%RH の環境下で1週間封 緘養生したのちに同環境下で乾燥させた.長さ変化 は打設直後より連続して埋め込み型ひずみ計により 計測した.収縮ひび割れ抵抗性はJIS A 1151 一軸拘 束収縮試験により評価した.

キーワード 高強度コンクリート,凍結融解,塩分浸透,収縮ひび割れ抵抗性 連絡先 〒940-2188 新潟県長岡市上富岡町 1603-1 長岡技術科学大学 TEI:0258-47-1611

5-236

4.試験結果

28日標準養生の圧縮強度試験結果を表 - 4 に示す. 強度は供試体3体の結果の平均値である.

水銀圧入法による細孔径分布の測定結果を図 - 1 に示す.W/B が小さい高強度配合 H-3, H-4 は, その 他の配合に比べて細孔組織が緻密になっていること がわかる.

凍結融解抵抗性試験結果を図 - 2 に示す .今回の実 験では,いずれの配合も高い耐凍害性を示した.し かし,高強度配合 H-3, H-4 は,その他の配合に比べ コンクリート表面の剥離が少なかった.

電気泳動法試験結果を図 - 3 に示す.高強度配合 H-3,H-4 は,塩化物イオンの浸透量がきわめて小さ く,算出された実効拡散係数は普通強度レベルの配 合に比べて1~2オーダー小さい値となった.高炉ス ラグとシリカフュームを用いた配合 H-2 は,強度は 普通レベルであったが,拡散係数は高強度配合なみ に小さいことが確認された.これは,混和材による 細孔組織の緻密化によるものと考えられる.

自由収縮試験結果を図 - 4 に示す.高強度の H-3, H-4 は脱枠前の自己収縮が大きいが,脱枠以降の収 縮(乾燥収縮と乾燥開始後の自己収縮の和)は逆に 普通強度配合よりも小さい.結果として,トータル の収縮量は高強度,普通とで同程度となった.

ー軸拘束収縮試験結果を図 - 5 に示す.高強度の H-3, H-4 は自己収縮が拘束されることにより初期に 大きな応力が導入されている.その結果, H-4 は脱し や前の自己収縮のみによりひび割れが生じ, H-3 も 乾燥開始後早期にひび割れている.また,高炉スラデ グとシリカフュームを用いた H-2 は,自己収縮が大 - 100 きくなかったが,早期にひび割れた.

5.まとめ

高炉スラグ微粉末,シリカフュームの混和材を混 入することで高強度化を図ったコンクリートは,細 孔構造が緻密で,凍結融解抵抗性,塩分浸透抵抗性 に優れていることが確認された.しかし,自己収縮 が大きく初期の収縮ひび割れが懸念されるので,何 らかの対策が必要であると考えられる.

【謝辞】試験実施にあたって,株式会社福田組,株式 会社アドヴァンス,株式会社プロダクト技研の御協力 を得た.付記して謝意を表す.

三浦ほか:コンクリートの自己収縮に及ぼす高炉スラグ微粉 末の影響,コンクリート工学年次論文報告集,vol.17,No.1,