フライアッシュに含まれるアルカリが ASR に及ぼす影響に関する一考察

(財) 電力中央研究所 正会員 〇山本 武志, 廣永 道彦 (株) セレス 正会員 增子 善和, 久松 信太朗

1. 目的

フライアッシュ(以下 FA)に含まれるアルカリが ASR 抑制効果に及ぼす影響を評価する.特に FA 中でのアルカ リの存在形態について考察する.

2. 実験概要

(1) モルタル試験

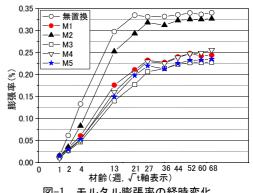
モルタル用細骨材にパイレックスガラス 7740 (ほうケイ酸ガラス) を用い、通常の ASR 評価試験で用いられるア ルカリ添加を行わず, 普通ポルトランドセメント (Na,0=0.31%, K,0=0.47% (R,0=0.62%), 以下 OPC) を使用した. 一方で試験体の ASR 反応を促進させるために骨材/結合材比を 1.5 とした. そして, FA (表-1) を細骨材代替の体積 置換率 10%となる配合で混合し, FA を結合材換算せずに水/セメント比=0.5 で 4×4×16cm のモルタル試験体を打設 した. なお, 細骨材の粒度調整は JIS A1146 に定められる方法に準拠した. 型枠脱型後の試験体に対して 38℃湿空 養生を行い, 所定材齢で試験体長を測定した 1).

(2) FA のアルカリ存在形態の評価

試験体長測定を終えた試験体を切断・研磨し、EPMA による元素分布測定を FA 粒子、および未水和セメント粒子 を中心として実施した.分析領域は, 0.02×0.04mm として, FA および未水和セメント粒子とそれらの周囲のセメン ト水和物相に含まれるアルカリ濃度分布を分析した. また, API 法²⁾で OPC を用いず FA のみを使用した懸濁液 (FA3. 0g+イオン交換水 50ml, 80℃-18 時間) 中の Na⁺, K⁺, Ca²⁺濃度を求め、FA の水溶性成分量の評価を行った.

3. 実験結果

(1) モルタル膨張量


膨張率の経時変化を図-1 に示す. 膨張傾向が収束する材齢 27 週までは、ほぼ√t 則に従い膨張することを確認し た. 最終材齢とした 68 週において、いずれの FA を混合した場合でも FA 無混合モルタル (基準) の膨張率に比べて 低い膨張率に収まった. しかし、M2 を混合した場合は、他のいずれの FA を混合した場合に比べて ASR 抑制効果が 低く,無混合時よりも0.014%低い程度であった. M2 の R₂0 は 1.44%であり,他の FA の 0.57~0.98%に比べてアルカ リ量が僅かに高い.

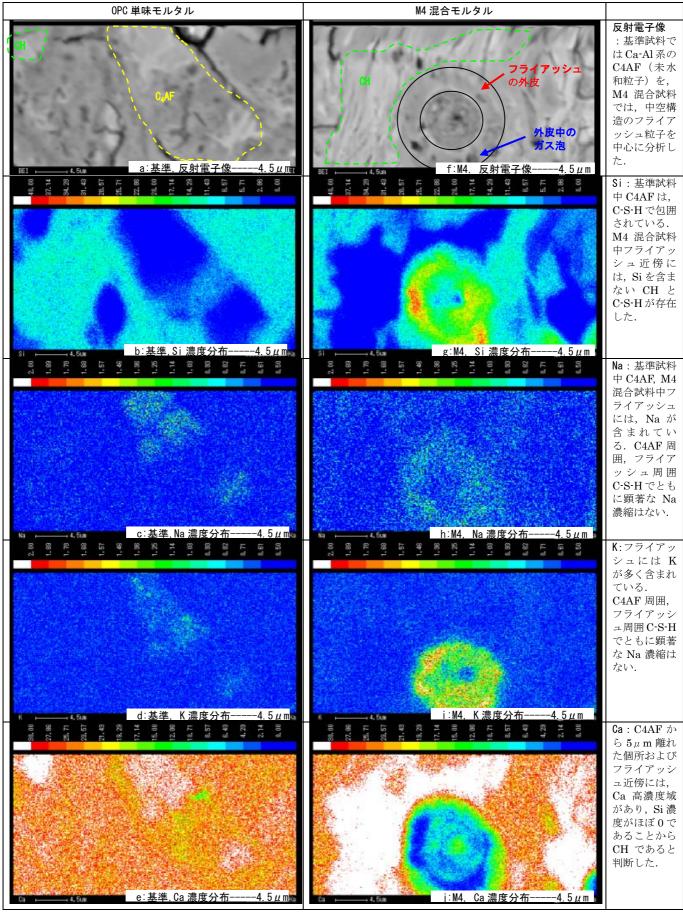
(2) FA のアルカリ存在形態評価

モルタル中のFA 粒子近傍、ならびに未水和セメント粒子(C4AF)近 傍の Si, Na, K, Ca 濃度分布を図-2 に示す. C4AF 粒子中の Na, K 濃度 は、周囲の C-S-H 相内に比べて高い. FA 粒子中の Na, K も周囲の C-S-H 相内に比べて高い. また, FA に含まれるアルカリはセメントに比べて 多いが、FA の水溶性アルカリは、セメントに比べて少ないことから、 FA に含まれるアルカリは、主に非晶質相中に存在すると考えられる (表-1). 38℃湿空中で材齢 68 週までの範囲に限られるが、セメント 硬化体中では FA 粒子に含まれるアルカリの多くは粒子中に留まって いると推察した.

4. まとめ

FAのアルカリ量はセメントに比べて多く、その含有量の違いにより ASR 抑制効果は異なるが、細骨材代替として体積置換率 10%で混合した 場合は ASR を抑制できる. これは、ポゾラン反応に伴う CH 含有量の低 下ならびに pH の低下と併せ、FA から溶出するアルカリ量が少ないこ とによると推察した.

モルタル膨張率の経時変化


		A SECTION S
表-1	フライアッシュ	の化学特性と諸特性値

試料	強熱 減量 (%)	SiO ₂ (%)	CaO (%)	Fe ₂ O ₃ (%)	Na ₂ O (%)	K ₂ O (%)	*API (%)	水溶性 Na mg/g	水溶性 K mg/g	水溶性 Ca mg/g	pН	ブレーン 値 cm²/g	活性度指数 (%)	
													91 日	1年
M1	2.1	49.8	6.04	13.3	0.20	0.56	43	0.07	0.03	2.56	12.0	4040	99	115
M2	3.1	53.8	4.83	12.3	0.66	1.19	42	0.22	0.04	3.26	12.0	4380	100	116
M3	2.2	73.1	1.70	4.3	0.34	0.58	34	0.07	0.03	0.52	10.7	3370	97	112
M4	2.1	55.6	4.06	8.3	0.51	0.71	35	0.18	0.04	2.95	12.1	4040	99	115
M5	4.4	55.6	2.20	7.5	0.26	1.01	33	0.07	0.06	0.44	10.3	4040	96	111
OPC	0.16	21.5	67.2	2.9	0.31	0.47	_	0.66	1.15	10.4	12.8	3350	**(67)	** (70)

注:*API:山本ら²⁾の手法により求めた. **():各材齢における基準モルタルの圧縮強度(N/mm²)を表す.

キーワード アルカリシリカ反応、ASR、フライアッシュ、アルカリ、濃度

連絡先 〒270-1194 千葉県我孫子市我孫子 1646 (財) 電力中央研究所 TEL04-7182-1181

参考文献

- 1) 山本・廣永: フライアッシュ外割り混合時の ASR 抑制効果に関する一考察, 土木学会第 62 回年次学術講演会, 5-451, pp. 901-902, 2007.
- 2) 山本・金津: API 法によるフライアッシュのアルカリシリカ反応抑制効果の評価, 土木学会論文集 E, Vol. 62, No. 4, pp. 657-671, 2006.