部材寸法が ASR による膨張に及ぼす影響に関する実験的研究

	7	Z命館オ	、学	学生会	員	藤井	洋介
	(株)ピーエス三菱			正会員		山村	智
	㈱国際建設技	支術研 穿	衍	正会員	Į	葛目	和宏
立命館大学	正会員	水田	真紀・	岡本	享久・	児島	孝之

1.はじめに

アルカリ骨材反応(以下,ASR)によるコンクリート構造物の損傷が確認されて以来,様々な補修・補強が施されてきた.それにも拘らず,現在でも,長期にわたるASR 膨張の持続やかぶりコンクリートより内部へのひび割れ進行の報告¹⁾がなされている.そこで本研究では,このような持続的な劣化の進行は鉄筋による拘束と,拘束されるコンクリートコアの大きさにも影響されると考え,断面寸法の異なる RC 部材の ASR 膨張について実験的に検討した.

2.実験概要

供試体の寸法を図-1 に,供試体要因を表-1 に示す. 供試体長さは 600mm と一定にし,断面寸法を3種類に 変化させた.また,それぞれの供試体の軸方向鉄筋比, せん断補強筋比は同程度になるように配慮した.

コンクリートの示方配合を表-2 に示す.本研究では, JIS A 1145(化学法)で無害ではないと判定された安山 岩系反応性骨材を使用し,事前に行ったペシマム試験か ら粗骨材では反応:非反応=50:50,細骨材では40:60

の割合で混合した.さらに,水セメント 比を 62%,コンクリート中の目標アルカ リ量を 12.0kg/m³とし,40 100%RHの室 内で ASR による膨張を促進させた.

3.実験結果および考察

図-2 に長さ z 方向の側面のひび割れ状 況を示す .ここで、図中の赤線は幅 0.2mm 以上,黒線は 0.2mm 未満のひび割れを示 しており,数値はひび割れ幅である.全 ての供試体で,全面にわたって亀甲状の ひび割れが発生した.0.2mm 以上の幅の 大きなひび割れに着目すると *S*-600 供試 体では軸方向・周方向ともに軸方向鉄筋 に沿ったひび割れが卓越したが,断面寸 法が小さくなるにしたがいひび割れの進 展に特別な傾向が見られず,ランダムに

表-1 供試体要因

	寸法	使用鉄筋				
供試体名	x x y x z	(鉄筋比%)				
	(mm)	圧縮側	引張側	スターラップ		
S-200	200 × 200	D6	D10	D6		
	× 600	(0.189)	(0.420)	(0.122)		
S-400	400 × 400	D10	D19	D6		
	× 600	(0.102)	(0.409)	(0.079)		
S-600	600 × 600	D16	D29	D10		
	× 600	(0.127)	(0.412)	(0.095)		

表-2 コンクリートの示方配合

単位量 (kg/m ³)						NaC1	
WC	S		G		No 70	(kg)	
vv	C	S1	S 3	G1	G3	110.70	(16)
168	271	512	350	500	494	0.27	20.1

キーワード ASR,拘束,部材寸法,ひび割れ

連絡先

〒525-8577 滋賀県草津市野路東 1-1-1 立命館大学理工学部都市システム工学科 TEL 077-561-3344

ひび割れが発生した.

図-3 に、供試体側面で測定した軸方向および周方向の膨 張量の経時変化を示す.ここで,膨張量とは軸方向鉄筋よ りも内側でスターラップ上でない位置に取り付けたチッ プ間をコンタクトゲージで測定した値である.これより, 断面寸法と長さが同じ立方体形状のS-600供試体以外では, 軸方向と周方向の膨張量に差が生じ、周方向の膨張量の方 が大きくなった.今回実験した供試体の部材寸法の比を軸 方向 z 長さ: 周方向 y 長さで表すと ,S-600 では 1:1 ,S-400 では3:2, S-200 では3:1 であり, このような軸方向と 周方向の膨張量の違いは部材寸法の比の逆数にほぼ合致 した結果となった . ASR 膨張によるひび割れの発生は 拘束を受けない供試体外縁から起こること, 本研究では 鉄筋を除く,側面中央あたりの膨張量を測定したこと,

図-2より,特にS-600供試体では軸方向鉄筋に沿った幅の 大きなひび割れが発生していることから,3種類の供試体 の膨張量を単純に比較することはできない.しかし,各供 試体の軸方向と周方向の膨張量の差は,部材寸法だけでな く供試体形状による影響により生じた可能性があると考 えられる.

図-4 に超音波伝播速度とひび割れ密度の経時変化を示 す.ここで,ひび割れ密度(m/m²)とはひび割れ総延長(m) を表面積(m²)で除した値であり,超音波伝播速度は供試体 断面中央で軸方向に測定した.図より,全ての供試体でひ び割れ密度の増加に伴い,超音波伝播速度が低下したこと から, コアコンクリートが ASR 膨張により損傷している ことが予想される.また,今回の最終測定の時点では,部 材寸法がひび割れ密度に及ぼす影響は観察されなかった.

4.結論

(1) 部材寸法が大きいほどひび割れ幅も大きくなり,特 に軸方向鉄筋に沿ったひび割れが顕著であった.

部材寸法や供試体形状の影響を受け,軸方向および (2)周方向の膨張量に差が生じる可能性がある.

(3) ひび割れ密度の増加とともにコアコンクリートの超 音波伝播速度が減少したことから、表面だけでなく内部も ASR 膨張による損傷を受けていると予想される.

参考文献

1) K.Ono, M.Taguchi: Long-term Behavior of AAR Bridge Pier and the Internal Deterioration, Proceedings of the 11th International Conference on AAR in Concrete, pp.1167-1174, 2000

図-4 伝播速度とひび割れ密度の経時変化

È

闿