偕楽園公園における回遊特性分析を目的とした CG データ構築とその評価

茨城大学 学生会員 ○小野 浩伸 茨城大学 正会員 小柳 武和 茨城大学 正会員 桑原 祐史 茨城大学 正会員 石内 鉄平

1 研究の背景

茨城県水戸市では,偕楽園と千波湖を中心として,約 300ha に及ぶ公園緑地の整備が行われており、これらの 公園緑地を総称して偕楽園公園とし,景観資源に配慮し た整備を進めている.こうした整備を行う際には,その効 果・影響を視覚的に予測することが必要になるが、その有 効な手段として、コンピュータグラフィックス(CG)の利用が ある.近年.CG データを用いたシミュレーションは景観検 討や合意形成に大きく貢献している.偕楽園公園の景観 整備においても、CG データを用いたシミュレーションは有 効な手法になり得ると考えられ、景観整備を前提とした CG データ構築に関する研究が必要である.

本研究では.偕楽園公園利用者の回遊行動に着目す る.主に現地調査によるデータに基づき,園内の景観資源 と回遊特性を再現した CG データの構築・評価を行う.

2. 研究の目的

以下の3項目を本研究の目的とする.

- ① 回遊特性分析を目的とした CG データの構築
- ② 構築した CG データの評価
- ③ CG データを利用した回遊ルートの提案

3 研究対象地域

偕楽園公園を対象地域とし、本園を除く範囲を CG デ ータ構築範囲とする(図2施設配置図を参照).

4 研究の流れ

研究の流れを図1に示す.

5 CG データの構築

5.1 使用ソフトウェア

(1) UC-win/Road

本研究における CG データ構築のベースになる CG シ ミュレーションソフトウェア.

(2) Auto CAD

3D モデルの作成に使用する.

(3) shade

Auto CAD に比べ、3 次元曲面の作成に向いている.

5.2 CG データ作成項目

本研究における CG データ構築にあたって必要とされ る作項目とその表現手法について整理した(表 1).

図1 研究の流れ

表 1 CG データ作成項目

	作成(表現)項目	本CGデータにおける表現手法	評価
地形表現	標高の表現	・50mメッシュ標高データを使用する ・2.5m標高データの作成が可能であれば行う	
	衛星画像 航空写真	·IKONOS衛星画像(解像度1m)2000-2002年度を使用する ·Pasco航空写真画像(解像度40cm)も状況に応じて使用する	
平面形状	道路		
	河川	・地図・現地調査データを基に平面形状の入力を行う ・テクスチャは現地写真を用いて表現する	
	湖沼	7 7 7 7 7 10-5025 3 542 7110 1 22 50 7 0	
3Dモデルによる表現	樹木	・現地写真を用いたアスタリスクツリーを使用する ・座標データを基に配置を行う	
	建築物		
	Mレ ベンチ	 -3Dソフトウェアを用いて詳細な作り込みを行う(形状、高さ)	
	東屋	・テクスチャは現地写真を用いて表現する ・作成した3Dモデルは座標データを基に配置を行う	
	看板		
	照明 その他の設置物		
回遊特性の表現		・センサによる計測データに基づいて、利用者モデルの配置を行う ・調査データを基に利用者の属性を表現する	
時系列表現		・年度の異なる衛星画像を基にCGデータを作成(年単位の変化) 樹木の変化、気象現象を表現(季節・月単位の変化) ・回遊行動の変化、明暗の変化を表現(24時間単位の変化)	
背景		・作成範囲外の可視領域は写真を切り抜いた画像を使用する	

キーワード CG シミュレーション, 大規模公園, 回遊行動, 景観認識

〒316-8511 茨城県日立市中成沢町 4-12-1 茨城大学工学 tel:0294-38-5004 fax:0294-38-5249 連絡先

5.3 現地調查 資料収集

(1) 現地写真撮影

テクスチャ作成のための現地写真を撮影した.

(2) 現地測量

詳細に作り込む施設について,現地にて形状・高さ等 に関して測量を行った.

(3) 座標・個数データの収集

既存研究から,樹木・東屋・トイレ・ベンチ・史跡・名勝 について種類、数、座標を把握した(図4).

- (4) 回遊データの把握
- a) 回遊データの把握方法
 - ① 対象領域をいくつかのエリアに分けて設定する. (ex) 本園エリア・千波湖エリア・……)
 - ② エリア毎の「結節点」を設定し、エリア間の利用者の 移動をセンサにより計測する.
- ③ エリア内の利用者の流れは過去のデータ・アンケー ト・景観資源の有無等から予測を行い算定する.
- ④ 既存調査から利用者の属性を把握する.
- b) センサに求められる条件を表 2 に示す.

表 2 センサに求められる条件

項目	求められる性能
設置方法	樹木・スタンドなどを利用した設置が可能
カウント エリア	カウントするエリアとその形状の把握・調整が可能
人間以外の移動体	小動物、カートなどの高さの異なる移動体への対応
混雑 時のカウント	平行、逆方向に歩く利用者をそれぞれカウントできる
野外使用	環境に左右されない(天候、気温、明暗、音)
使用時間	24時間(12時間)連続使用ができる

6. 今後の展開

今後の展開として、以下の2項目を行っていく.

① CGデータの評価

アンケート実験により、構築した CG データの評価を行 い,現実空間との乖離を明らかにする.

② 回遊ルートの提案

CG データの特性を考慮した上で、CG データを利用し た回遊特性の分析を行う.分析結果に基づき,偕楽園公 園におけるルート提案とそれに伴う整備提案を行い、CG データによる映像として表現する.

【参考・引用文献】

石内鉄平:偕楽園公園管理業務の高度化を想定した公園管理システム の構築とその利用, 茨城大学大学院博士学位論文, 2008.

図3 構築した CG データ

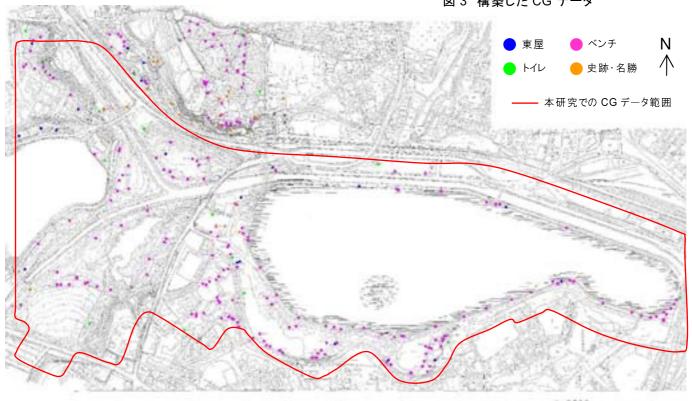


図2 CG データ構築範囲と施設配置図 1)