FBG 光ファイバセンサを用いた伸縮計の開発

飛島建設	正会員	○熊谷	幸樹
飛島建設	正会員	田村	琢之
飛島建設	正会員	本山	寛
東横エルメス		山本	郁夫
東横エルメス		狩野	勝幸

1. はじめに

近年,光ファイバセンサを用いた斜面や地すべりの動態監視事例が増えつつある¹⁾.これは,光ファイバセンシング技術が,電気式に比べ無誘導性,耐腐食性,長距離伝送性等で優れた特長を有しているからである. 光ファイバセンシング技術のなかでも,FBG(Fiber Bragg Grating)によるセンシング技術では,FBG がひずみを 検知する素子としてひずみゲージと同等の機能を果たすことから,各種土木用計測器の開発が可能となる²⁾.

本論文では,崩壊性斜面や地すべりの長期動態観測に供するために開発した FBG 伸縮計の概要を示すとと もに,実用化に向けて実施した各種試験結果と測定精度の検証結果について報告する.

2. FBG 伸縮計の機構

FBG 伸縮計の外観を写真-1 に,構造を図-1 に,仕様を 表-1 にそれぞれ示す.

FBG 伸縮計は、その寸法が長さ 250mm、幅 108 mm、高さ 71mm で、斜面上での設置が容易な大きさである。斜面の すべり挙動は、インバー線の伸縮として回転するプーリー を介して伸縮計内に格納されたカンチレバーに対する変位 として付与される機構となっている(図-1 参照).カンチ レバーには1対の FBG が配置されており、すべり挙動によ って発生するひずみを反射波長の変化として感知し、それ ら2 個の値の計算処理により伸縮量を算出する。また、す べり挙動に伴う反射波長の変化はその絶対量が等しいこと から、それら絶対値を平均化すれば誤差の小さい測定値が 得られる。同時に、温度変化によって 2 個の FBG に同じ波 長変化が発生するため温度補償することができる。

FBG の多重化方式には,時間分割多重化(TDM: Time Division Multiplexing)と波長分割多重化(WDM: Wavelength Division Multiplexing)があり,どちらの方式の FBG も組込むことが可能である. TDM 方式を採用した場合には,1本の光ファイバに直列接続した計測器の個数に関係なく、表-1 に示す測定範囲や測定精度(非直線性)を保持したまま多点計測が可能であり、大規模な計測サイトへの適用が可能である³⁾.

3. 室内試験の概要と結果

3.1 運搬時の振動を想定した振動試験

トラック等で計測器を運搬する際の振動が計測器に与え

キーワード 光ファイバセンサ, FBG, 伸縮計, 非直線性, ヒステリシス 連絡先 〒270-0222 千葉県野田市木間ヶ瀬 5472 飛島建設株式会社 技術研究所 TEL:04-7198-7572

写真-1 FBG 伸縮計の外観

-20~+60°C

IP25相当

許容動作温度

保灌等級

る影響を確認するため,振動周波数 33Hz,振 動加速度 1.0Gで 4 時間振動を与えた.なお, 試験期間中の室内温度は 21.6~21.9℃であった.図-2に,試験期間中の温度変化と各 FBG のひずみ変化を示す.

同図より, 試験中で最大 10 µ のひずみ低下 が見られたが, 時間の経過に伴って単調減少 することなく, 試験終了時点で 5 µ の低下と なったことがわかる. これは, FBG によるひ ずみの測定誤差±5 µ に相当するものであり, 運搬等の振動に対して測定上問題となる影響 を受けないものと考えられる.

3.2 測定精度試験

測定精度の検証を目的とした室内試験では, 定常温度における非直線性とヒステリシスに ついて検証を行なった.

図-3 に、50mm ごとに最大 500mm まで付 与した変位に対するひずみの変化を示す. な お図中に示すひずみは、前述の通り 2 個の FBG から得られるひずみの平均値である. 同 図より,最大 500mm の変位に対し約 2,900 μ の定格出力となり,高い相関が得られた.

また,図-3に示す試験結果に基づき,その 非直線性とヒステリシスを算定し,図-4に示 す.同図より,非直線性とヒステリシスの最 大値は,それぞれ0.61%、0.53%であり,表-1 に示す仕様を満足するものであった.

5. おわりに

FBG 伸縮計は運搬等の振動に耐えうる構造 であり、従来の電気式伸縮計と同等の測定精 度を有することが確認できた.今後は室内試 験や現地検証によるその耐久性を検証してい きたいと考えている.ひずみゲージと同様に

高い汎用性を持つ FBG 光ファイバセンサは、さらに無誘導性、無防爆生、長距離伝送性等の特長を活かした 様々な計測器の開発が可能であり、今後は斜面防災だけでなく構造物健全性監視に適用できると考えられる.

【参考文献】

- 土木研究所他:光ファイバセンサを活用した道路斜面モニタリングに関する共同研究報告書,「光ファイ バセンサを活用した斜面崩壊モニタリングシステムの導入・運用マニュアル(改訂版)」,2007.3.
- 2) 阿保寿郎、塩谷智基、熊谷幸樹、田村琢之、近久博志、Robert Knapp:ヒステリシスを軽減する機構を有 した片持ち梁式変位計の開発、土木学会第61回年次学術講演会、pp.519-520,2006.9.
- 3) 熊谷幸樹、塩谷智基,田村琢之:時間分割多重化による FBG 光ファイバ計測システム、電力土木、pp.88-90, 2006.5.

