剛な構造物近傍地盤の地震時沈下挙動に関する 1G 場模型振動台実験 (その1)変形メカニズムについて

電力中央研究所 正会員 河井正,石丸真 東京電力株式会社 正会員 佐藤博,末広俊夫,谷智之

1.はじめに 平成 19 年新潟県中越沖地震にお いて,柏崎刈羽原子力発電所内では,構造物の際 で比較的大きな埋戻し土の沈下が生じたと報告さ れている^{例えば1)}.岩盤上に設置された剛な構造物の 周囲に埋戻し地盤などの比較的軟質な地盤が存在 すると,両者の地震時せん断応答の差により,剛 な構造物近傍の地盤は,それより離れた地盤より も局所的に大きく沈下する.またそのメカニズム は,構造物に接する地盤が構造物から離れる際に 主働楔が生じるためであろうと推測されている²⁾. 著者らは,敷地内地盤の沈下発生メカニズムにつ いて図-1 のように推定し,その確認のため剛な金

属構造物と砂地盤による 1G 場小型模型振動台実験を実施した³⁾.

2.振動台実験の概要 振動台実験は,図-2に示すように,底面を固定した金属構造物と地盤の模型を作成し,表-1に示す全10ケースを実施した.使用した地盤材料は,主に珪砂4号であるが,同じ珪砂4号でも納入時期により物理特性が異なったために硅砂4号(1),硅砂4号(2)と区分している.また,珪砂5号:珪砂4号(2):寒水粉 = 1:2:0.15の割合で混合した試料も使用した.

実験ケースは、沈下量に影響を与える因子に関する基礎的な検討を

目的として,地盤の相対密度,土槽境界条件(地盤 水平変位量の調整),地下水面の有無,砂の種類, 構造物の三次元性などをパラメータとした.それ ぞれの実験において,加振は合計3回実施し,最 大加速度100Gal以下の小加振,300Gal程度の中加 振,900Gal程度の大加振を,同じ波形の振幅のみ を調整して用いた.入力波形は新潟県中越沖地震 の際に,柏崎刈羽原子力発電所1号機原子炉建屋 2Fで観測された記録を元にした.振動台上で計測 された入力加速度の一例を図-3に示す.

3.構造物近傍地盤の変形について 高速度カメ ラと地盤に埋設したマーカーにより,側面から地 盤変形を観察した.高速度カメラは図-4に示す位 置で,250Hzのシャッタースピードで撮影した.

図-1 沈下メカニズムの推定

図-2 実験模型の概要

表-1 実験ケース一覧

ケース名	地盤		入力最大	地表面最大変位(mm)			備考
	試料	相対密度	₹ 加速度	近傍	一般部		
		%	Gal	沈下	沈下	水平(離れ)	
CASE01	珪砂4号(1)	47	857	13	5	16	
CASE02	珪砂4号(1)	61	923	4	1	6	スポンジ 境界
CASE03	珪砂4号(1)	23	909	25	9	9	可動壁固定
CASE04	珪砂4号(1)	27	885	34	8	19	
CASE05	珪砂4号(1)	44	902	23	4	25	下部地盤飽和
CASE06	珪砂4号(2)	81	894	4	1	15	下部地盤飽和
CASE07	珪砂4号(2)	29	872	24	9	24	
CASE08	混合土	25	862	20	12	18	
CASE09	珪砂4号(2)	25	911	30	13	29	三次元構造物
CASE10	珪砂4号(2)	28	909	21	9	23	三次元構造物

キーワード 2007 年新潟県中越沖地震,振動台実験,地盤沈下,変形メカニズム 連絡先 〒270-1194 千葉県我孫子市我孫子 1646 (財)電力中央研究所 地震工学領域 TEL 04-7182-1181 取得した画像の例を図-5 に示す.ここでは,CASE07,CASE08 について, 地盤内に埋設した円形ターゲットの位置を任意の2時刻で比較し地盤 の変形状態を確認した.図-6,7 は せん断変形により地盤が剛構造物 から離れる時刻, 地盤と構造物の間に剥離が生じる時刻, せん断 変形により地盤が剛構造物に近づく時刻についてターゲットの移動を 示したものである.この図より,近傍地盤の相対的に大きな沈下と構 造物から地盤が離れるタイミングが異なり,(地盤の剥離) (主働す べりによるずり下がり沈下)の順であること, で地盤が剛構造物側 に戻る場合は,構造物近傍地盤の水平移動が先に停止し,遠方地盤が 若干乗り上げる形で変形することがわかる.なお地盤物性の相違によ り,剥離する範囲が異なる.

参考文献 1)総合資源エネルギー調査会原子力安全・保安部会耐震・構造設計小委員会地震・津波、地質・地盤合同ワーキンググループ(第3回)配付資料 2)龍岡文夫:「5 学会合同柏崎・刈羽原子力発電所視察からのコメント」,土木学会,地盤工学会,日本地震工 学会,日本建築学会,日本地震学会 2007年新潟県中越沖地震災害調査報告会資料集,p88. 3)河井正,他:「剛な構造物近傍地盤の地震時沈下挙動に関する1G場模型振動台実験」, 第43回地盤工学研究発表会

図-5 高速度カメラ画像の例

図-6 CASE7 の構造物近傍の変形状態(前時刻

後時刻)

図-7 CASE8の構造物近傍の変形状態(前時刻 後時刻)