谷埋め盛土の原地形が地震応答性状に及ぼす影響

東北大学大学院 学生会員 丸山 健太郎 正会員 風間 基樹・渦岡 良介・森 友宏 日本大学 正会員 仙頭 紀明

1. 研究の背景と目的

盛土斜面は自然に堆積した地盤に比べ地震等による 被害が発生しやすいことが知られている.さらに,そ の物理特性は把握しづらく,地震等の自然災害に対し て対策を講じにくい.そこで,本研究では,谷埋め盛 土の原地形の違いにより生じる地震応答性状の違いを 明らかにすることを目的とし,宮城県仙台市東北部に 実在する谷埋め盛土斜面を三次元の有限要素モデルで モデル化し,地震応答解析を行った.また,その際に 生じた地震波の伝播や増幅に関する特性について考察 するため,加速度時刻歴,フーリエスペクトルおよび 計測震度により比較を行った.

2. 地震応答解析

本研究では,仙台市東北部の谷埋め盛土斜面の盛土 部および地山部のそれぞれに設置した地震計で観測さ れた地震波を用いて地震応答解析を行った.また,地 震応答解析の結果と地震計で得られた結果の比較と考 察を行った.

2.1 解析モデル

今回の解析に用いた三次元有限要素モデルを図-1 に示す.本解析では谷埋め盛土による伝播の影響のみ を考えることと解析時間の短縮のため最薄部の地山部 分の厚さが5mとなるようにした.

境界条件については,モデル底面を完全固定とし, 側面は上下方向に固定した.入力地震波は検討斜面で 2007年4月12日に地山上の観測点P4で実際に観測 されたものを基盤面にそのまま入力した.その波形を 図-2に示す.なお,地震波の入力時間は40秒で,こ こでのx方向は東西方向,y方向は南北方向,z方向 は鉛直方向と設定した.

図-1 三次元有限要素モデル

2.2 材料パラメータ

地盤はすべて線形弾性体とした.この盛土斜面のせ ん断波速度は,表面波探査より170m/sとした.地山 部分については表面波探査で500m/s程度と計測でき たが,その点では地山だけでなく盛土の影響も受けて いたと考えられるので,それも考慮して地山のせん断 波速度は700m/sとした¹⁾.これらより,盛土と地山 のそれぞれのせん弾性係数や減衰定数を設定した²⁾. 今回の解析に用いた材料の物性値を表-1に示す.なお, 減衰は表-1に示す Rayleigh 減衰として与えた.また, 表中の固有振動数は,層厚20mの地点の一次モード の固有振動数である.

3. 解析結果と考察

三次元解析および観測により得られた結果 P2~P4 の X 方向の応答加速度時刻歴を図-3 に,それぞれの X 方向のフーリエスペクトルを図-4 に,三成分の計 測震度を図-5 に示す.ただし,P2 および P3 は盛土 部,P4 は地山部にある観測点で,P2 における盛土厚

表	1	地盤各層の物性値
~	_	

	盛土	地山
密度 ρ (t/m ³)	1.8	2.5
せん断弾性係数 ${ m G}~({ m kN/m^2})$	5.20×10^{4}	1.23×10^{6}
poisson 比 ν	0.3	0.3
減衰定数 h	0.030	0.015
固有振動数 $\omega_1 \; (rad/s)$	13.35	54.98
質量比例減衰定数 $lpha_0$	0	0
剛性比例減衰定数 $lpha_1$	4.49×10^{-4}	5.46×10^{-3}

図-4 解析結果(フーリエスペクトル)

はおよそ 16m, P3 における盛土厚はおよそ 8m となっている.

応答加速度時刻歴に注目すると,最大応答加速度は P2,P3の盛土上の地点では解析値が観測値に比ベ小 さい値になっていた.一方,地山上の地点のP4では, 観測値の方が解析値に比ベ小さくなっていた.特に, P3では最大応答加速度の値や振幅の減少が起きた際 の応答加速度に大きな差が生じていた.

次に,応答加速度のフーリエスペクトルを見ると, P2,P3の地点で観測値と解析値のピークとなってい る振動数が一致していることがわかる.また,P2と P3ともに10Hzを超えてからスペクトルが出ていな いのは,メッシュサイズによる影響と考えられる.谷 の最深部を通る二次元断面について固有値解析を行っ た結果,一次モードの固有振動数は約2Hzであった.

三次元モデルになると二次元断面の一次モードの固有 振動数よりやや高い振動数にシフトし,2.5Hz付近の ピークは一次モードの固有振動数に対応していると考 えられる.

また,計測震度³⁾について見ると,観測点 P2とP4 では解析と観測の計測震度の値はほぼ一致しているが, P3では観測値に比べ解析値が小さい値が得られた.こ の谷埋め盛土の中腹にある観測点 P3では,応答加速 度を比較した際にも解析値と観測値に大きな差が生じ ていた.表-2では,三次元解析の応答加速度および計 測震度の観測値に対する比を示す.表より,P3のx, y,zの応答加速度三成分のうち最も加速度の絶対値 が大きいx方向の応答加速度が観測値の0.38倍とか なり小さくなっており,これが要因の一つと考えられ る.この結果についてはさらなる検討が必要である.

表-2 三次元解析と観測値の比

Case	Node	計測震度	ACC(X)	ACC(Y)	ACC(Z)
			(gal)	(gal)	(gal)
3D/Obs	P2	1.00	0.75	0.53	1.30
	P3	0.81	0.38	0.71	2.57
	P4	1.07	1.22	1.67	1.07

4. 結論

本研究により,以下のような結論が得られた.三次 元モデルの地震応答解析で得られた最大応答加速度は 観測値に比べ全体的に小さくなった.また,計測震度 では,P3のみ観測値に比べ小さな値が得られたが,そ の他の地点では応答値は観測値とほぼ一致した. 参考文献

- 1) 仙台市:平成 14 年度 仙台市地震被害想定調査報告 書,2002
- 2) 地盤工学会:地盤の動的解析 基礎理論から応用まで ,2007
- 3) 立命館大学理工学部耐震工学研究室:気象庁震度階の 計算(3方向バージョン),

 $\label{eq:http://www.ritsumei.ac.jp/se/rv/izuno/soft.html, 2004.$