長距離管路における気液スラグ流の分布特性について

日本大学工学部学術フロンティア	正会員	〇山田	泰正
日本大学生産工学部研究員	正会員	後藤	吉範
日本大学生産工学部	フェロー会員	遠藤	茂勝

1. はじめに

高濃度に藻類が混じったアオコは流動性が悪いた め回収後の輸送方法は、圧縮空気を用いた管路輸送 が試みられている.この輸送は圧縮空気と輸送物を 同時に管路内に供給することでスラグ流を発生させ, 長距離での高速輸送が可能で、気液スラグ流によっ て発生する高速撹拌乱流を用いて、アオコの結合群 体の崩壊を促進させるとともに, 管路内の圧力変動 を伴う脈流によって細胞の破壊なども期待できる. また外来生物種の混入が問題となっているタンカー のバラスト水処理において,オゾンガスを混入しス ラグ流を発生させて循環させる高圧殺菌処理法への 応用などがある.この輸送を実現するためには長距 離管路気液スラグ流の現象の把握が必要であるが, これまでの研究は管路の長さ及び管路径が比較的小 さいものが多い. またスラグ流において, 気相と液 相の管路内における位置は運動量式によって予測さ れたものがほとんどであり,実際流動しているもの と対比できていない.本研究において長距離管路に おける気液スラグ流を工学的な分野への応用のため, 流動特性や流動過程での現象解析を目的とし、水理 学的な流動の検討を行った.また、これまで測定す ら困難であった気相長や液相長の測定が可能となっ たので、この実験結果を用いて管路内の気相と液相 の位置を割り出した流動分布図を作成し、管路長に よる管路内の流動の変化について検討することとし た.

2. 実験概要

実験設備は図-1に示すような管径*d*=38mm の透 明管路を用いて,長楕円状にパイプを設置した.気 相である圧縮空気はエアードライヤーによって水分 を除去した後レギュレータ,空気流量計を通して管 路へ,また液相である輸送媒体はタンクから流量計 を通して管路へそれぞれ供給し,同時にかつ連続的

キーワード 気液二相流,スラグ流,長距離管路,気相長,液相長 連絡先 〒963-8642 福島県郡山市田村町徳定字中河原1 TEL 024-956-8724

に供給した.実験条件は表-1 に示した条件で,気液 の流量比で示してある.表中の気相フルード数 Fr_G, 液相フルード数 Fr_Lは,気相流量 Qa,液相流量 Qw から算出した.また,表-2 は管路長と計測点を示し たもので,管路長 L と管径 d の比 L/d,および各測 定点 ℓ と管路長 L の比 ℓ/L で示したものである.測点 は図-1,表-2 中に示す地点である.光透過量測定装 置¹⁾による測定は V₁~V₆の各 6 地点,また圧力の測 定は P₀~P₆の各 7 地点において測定した.

図-1 実験概要図

表-1 気液流量実験条件

Fr_G/Fr_L		Fr _L					
		0.29	0.48	0.67	0.87	1.06	1.25
	0.96	3.32	1.99	1.42	1.11	0.91	0.77
	1.44	4.98	2.99	2.14	1.66	1.36	1.15
Fr_G	2.41	8.34	5.00	3.57	2.78	2.27	1.92
	3.37	11.66	7.00	5.00	3.89	3.18	2.69
	4.33	14.98	8.99	6.42	4.99	4.09	3.46

表-2 管路長および測定点

<i>L</i> (m) <i>L/d</i>	1/1	ℓ/L						
	L'a	P_0	P_1, V_1	P_{2}, V_{2}	P_3, V_3	P_4, V_4	P_5, V_5	P_6, V_6
70.0	1842	0.000	0.143	0.286	0.429	0.571	0.714	0.857
150.0	3947	0.000	0.133	0.333	0.533	0.667	0.800	0.933
310.0	8158	0.000	0.161	0.323	0.484	0.645	0.806	0.968
460.0	12105	0.000	0.109	0.217	0.435	0.543	0.761	0.978
620.0 16316	16316	0.000	0.081	0.242	0.403	0.565	0.726	0.887
	10310	0.000	0.161	0.323	0.484	0.645	0.806	0.968

-523-

3. 実験結果および考察

管路内のスラグ位置を示した流動分布を求めた. スラグ流は気相と液相の間欠流であるので気相と液 相が交互に配置され,スラグユニットは1対の気相 と液相となる.配置した気相及び液相の座標が*0*L>1 となる1つ前のユニットを最後のユニットとした. この結果を管路長 L/d = 1842 ついて**図-2**に,管路長 L/d = 3947 ついて**図-3**に,管路長 L/d = 8158 ついて **図-4**に,管路長 L/d = 16316 ついて**図-5**に示した. 図中における数字は気液供給口付近からの距離(m) を示し,L/d=16316 の場合,L=620(m)が管路末端部 の吐出口である.また,液相は黒印で示してある.

図-2 に示した管路長が短い L/d=1842 の場合, 吐 出口における気相の膨張が小さいので、供給口と吐 出口の気相長の長さを比べると変化が少ない。また 吐出口近辺において液相の崩壊がなく液相長の変化 もないので、供給口で発生したスラグがそのまま吐 出口まで流動している.しかし図-5に示した管路長 が長い場合、流動距離が進むとスラグ流速度は増加 し、気相の膨張の寄与が考えられ、また管路長が長 いと吐出口近辺で比較的短い液相が崩壊する.液相 は崩壊後管底部に滞留し、後続の液相スラグに吸収 され長くなるものと考えられる. 図-3,4 に示すよう に、管路径 d=0.038(m)の場合, L=150(m)より長い管 路において気液相長の増加が顕著に現れることがわ かる.このように長距離スラグ流の特徴である、気 相の膨張や液相の崩壊によって長くなる液相などの 再現が出来た.

4. まとめ

スラグの発生メカニズムより,滞留している液位 の上昇によって気相の通過部分が閉塞され,液相を 吹き飛ばす現象が発生しスラグ流が形成される.気 相と液相が一定量連続的に供給されていることから, 液位の上昇およびスラグが発生する周期はほぼ一定 と考えられ,長距離管路において供給口付近から 100m(*UL*=0.161)付近の気相と液相の間隔はほぼ 等しく,スラグの発生周期の間隔で流動しているこ とが分かる.またこれ以降において,気相の膨張が 徐々に顕著になるため液相と液相との間隔が徐々に 長くなり,スラグ流速度の上昇が始まる.この気相 の膨張は吐出口に近づくほど大きくなり,これと同 時に液相の間隔が大きくなるためと考えられる.

図-2 管路内の流動分布 (*Qa* = 180N⁽/min, *Qw* = 36⁽/min, *L* = 70m)

0(m)	5	10	15	20
25	30	35	40	45
50	55	60	65	70
75	80	85	90	95
100	105	110	115	120
125	130	135	140	145

図-3 管路内の流動分布 (*Qa* = 180Nℓ/min, *Qw* = 36ℓ/min, *L* = 150m)

0(m)	5	10	15	20
25	30	35	40	45
50	55	60	65	70
75	80	85	90	95
100	105	110	115	120
125	130	135	140	145
150	155	160	165	170
175	180	185	190	195
200	205	210	215	220
225	230	235	240	245
250	255	260	265	270
275	280	285	290	295
300	305	310		

図-4 管路内の流動分布 (*Qa* = 180N^Q/min, *Qw* = 36^Q/min, *L* = 310m)

謝辞

この研究は、日本大学工学部学術フロンティア推進事業から、一部援助を頂いたことを付記する.

参考文献

山田泰正,遠藤茂勝,落合実:長距離管路輸送における気液 流の流動特性と流動初期圧力について,環境技術学会誌「環 境技術」, Vol.37, No.2, pp117-125, 2008