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1. Introduction 
 
 In order to mitigate building damage, tsunami resistant 
building designs have been adopted where the lower level of 
the building is elevated by means of RC columns to allow 
the free flow of tsunami waves.  An example of such a 
building is shown in Fig. 1.  In this paper, the impact of 
tsunami water-borne massive objects on a RC building that 
is designed with an elevated lower level is considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Design and analysis of the building 
 
 The building considered is a three-story school building, 
located in a tsunami inundation zone that can also be used 
for vertical evacuation in the event of a tsunami (Fig. 2).  
The building was analyzed and designed according to the 
strength design method specified in ACI 318-02 (ACI 2002) 
using SAP2000.  Ordinary moment frame (OMF) for low 
seismic zone is considered for the building frame system.  In 
this study, impact on a 2-D frame is considered using a fiber-
based discretization model in OpenSEES (2006).  The 
design details and fiber-based modeling are given in 
Madurapperuma (2007). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Evaluation of tsunami forces 
 
 The dominant forces that need to be considered are the 
hydrodynamic force and the impact force due to water-borne 
objects.  The hydrodynamic force HF  can be evaluated from 
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where ρ = fluid mass density, DC = drag coefficient (2.0 for 
square columns), u = tsunami flow velocity, and A =  
wetted area of the object projected on the plane normal to 
the flow direction i.e., A hb= , in which h =  flow depth and 
b =  breadth of the object (FEMA 2000).  The tsunami flow 
velocity is calculated from 
 
 2 ,u gh=  (2) 
 
which is based on an analytical solution of Yeh (2006), 
where g =  gravitational acceleration.  The impact force-
time history is based on the impulse-momentum approach 
which results in the following expression for the time 
varying impact force IF , 
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where m =mass of the object, obju = velocity of the object 
and It = impact duration.  In Eq. (3) it is assumed that 
velocity of the object before impact is the same as the 
tsunami flow velocity u  and the linear momentum of the 
object after impact is zero.  The impact duration is taken as 
0.1 s and the impact force-time history is assumed to be 
triangular shape. 
 
4. Numerical results 
 
 The nonlinear dynamic response of the impacted 
column is investigated for shipping containers impacting at 
the maximum tsunami flood levels of 2.0 m, 3.0 m and 4.0 m 
above ground level.  The hydrodynamic forces and the 
maximum impact forces for a range of container masses are 
given in Madurapperuma (2007).  The displacement 
response of the whole frame due to impact of the 1750 kg 
container at 2.0 m above ground level is shown in Fig. 3.  
The column displacement at 2.0 m above ground level 
attains a peak value of 18 mm after 0.0725 s and then 
decreases to 15 mm at the end of impact (Figs. 3(a) and 
3(b)).  However, a constant lateral displacement of 7 mm at 
the impact section and 6 mm at the roof level can be seen 
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Fig. 2. Building configuration considered for impact 
analysis. 

Fig. 1. A tsunami resistant building with elevated lower 
level in Sri Lanka. 
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even after 5 s (Fig. 3(c)).  It is expected that the spalling of 
cover concrete followed by the yielding and buckling of 
reinforcements at the impact section cause such constant 
displacement of the frame which is not equal to that before 
impact (i.e., displacement due to hydrodynamic force only).  
The stress-strain behavior of cover concrete, core concrete, 
and longitudinal reinforcement are plotted in Fig. 4, for the 
impact at 2.0 m above ground level for three different 
masses of containers.  Since the cover concrete is not 
confined, stress in the cover concrete compression fibers 
exceeded the compressive strength 27.579−  MPa and was 
almost zero at the ultimate strain of 0.005−  which leads to 
spalling of the cover concrete due to impact of 1750 kg 
container (Fig. 4(a)).  The stress in the core concrete 
compression fibers reached 32.76−  MPa at a strain of 

0.0023−  and decreased to 19.4−  MPa at a strain of 
0.0018,−  which shows degradation of the axial load 

carrying capacity due to impact of 1750 kg container (Fig. 
4(b)).  From Fig. 4(c) it can be seen that the longitudinal bar 
in tension has yielded and the maximum strain is 0.0076 
which is 2.8 times the yield strain due to impact of the 1750 
kg container. 
 
5. Concluding remarks 
 
 It is found that impact at the mid section of the column 
is more critical than impact close to the floor level.  
Numerical results show that the OMF frame system is safe 
when impacted by the containers with a mass less than or 
equal to 1500 kg.  But for the 1750 kg container, the 
impacted column suffers damage due to strength 
degradation.  Therefore, the impact may cause extensive 

damage to the critical structural members of the building 
according to the mass of the water-borne object.  One of the 
impact mitigation strategies for critical buildings that may be 
used for evacuation purposes is strengthening the first floor 
using lateral bracings in the direction parallel to the tsunami 
flow.  Another impact mitigation strategy is the construction 
of crash barriers to protect the building.   
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Fig. 3. Deformed shape of OMF (magnified by factor 50) when impacted by 1750 kg container at 2.0 m above GL
after: (a) 0.0725 s (peak displacement), (b) 0.1 s (end of impact) and (c) 5 s. 

Fig. 4. Stress-strain behavior at impacted section of impacted column at 2.0 m above GL for different masses 
of containers: (a) cover concrete at extreme fiber in compression, (b) core concrete at extreme fiber in 
compression and (c) longitudinal bar in tension. 
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