回転摩擦ダンパーの制震特性に関する振動台実験および動的解析

京都大学工学研究科	学生員	○與北	雅友
京都大学工学研究科	正会員	豊岡	亮洋
京都大学工学研究科	フェロー	家村	浩和

1. はじめに

本研究では、筆者らにより提案されているリンク機構 を有する回転摩擦ダンパーに着目し、その動的特性を検 証するために、橋梁上部エモデルを用いた振動台実験を 行った.さらに、実験結果から得られたデータを用いて、 実験装置全体をモデル化し、実験結果との比較による全 体モデルの妥当性を得た上で、動的解析によりダンパー の設置配置による影響を検討した.

2. 回転摩擦ダンパー

2.1 回転摩擦ダンパーの概要

滑り支承などの一般的な摩擦ダンパーは橋脚などの下 部構造に伝わる荷重が動摩擦力以上にならない応答遮断 機能,及び同じ変位量,同じ最大荷重に対して他のダン パーより大きな吸収エネルギーが得られるといった多く の利点を有しているが,大きな滑り面を確保する必要が あり,摩擦力が鉛直作用力に依存するなどの問題点も有 している.本研究で着目したリンク機構を有する回転摩 擦ダンパーは,こうした点を解消する新しい摩擦ダンパ ーとして提案されている.

2.2 回転摩擦ダンパーの構造

図1に回転摩擦ダンパーの構造を示す.本ダンパーは, ステンレスのアームとその間に挟まれる高摩擦材 (動摩擦係数µ=0.45)をボルトで連結したリンク機構を 有している.構造体との連結部については回転可能なヒ ンジ構造で,水平変形を回転運動に変換し,リンク機構 部での滑りを期待することによって,エネルギー吸収を 行う構造になっている.そのため,大変位に対して大き な滑り面を確保する必要がなく,リンク機構部の角度変 形で追随可能である.さらに、リンク機構部への導入軸 力は,構造体の自重によらずボルトの軸力によるため, 発揮される摩擦力は上下方向の加速度によらず,また容 易に調整及び再設定が可能である.

リンク機構部で摩擦によるモーメント(M)が発生し, モーメントのつりあいからヒンジ間を結んだ直線の方向

キーワード 制震 摩擦ダンパー 振動台実験 動的解析

連絡先 〒615-8540 京都市西京区京都大学桂 京都大学大学院構造ダイナミクス分野 075-383-3244

DAMPTECH		非会」	ļ	Imad H.	Mualla
川口金属工業	(株)	正会	員	姫野	岳彦
川口金属工業	(株)	正会	員	比志島	康久

にのみ荷重 (M/L) が期待できる. この力を摩擦水平力 と称する

3. 振動台実験による効果の検証

3.1 振動台実験の概要

回転摩擦ダンパーの動的特性を検証するために,橋梁 上部エモデルを用いた振動台実験を行った.摩擦ダンパ ーを図 2 に示すように桁模型に設置し,桁模型を支える 支承には NR 支承または滑り支承を用いた.滑り支承を 用いた場合には,復元力装置として NR を設置した.た だし,ダンパーと振動台の接続部には 3 分力計を設置し ており,実験のセットアップに関わらず個々のダンパー の荷重を直接計測できる.

3.2 実験結果

滑り支承および復元力装置として NR を用いたケース に対して,正弦波(1.7Hz,最大 300gal)を x 方向(振 動台長手方向)に入力した時に得られたダンパー1 基の 相対角度(アームのなす角の変化量)—摩擦モーメント の履歴を図 3 に示す.動摩擦モーメントが相対角度によ

4. 動的解析による再現解析

実験では 1 方向(x 方向)にのみダンパーが効果を発 現する配置になっていたが,動的解析により平面全体に 効果を発現する設置配置を検討した.摩擦ダンパーの摩 擦モーメントと相対角度の履歴を図 4 のようにモデル化 し,実験配置(図 5)と実験配置から 45°傾けた配置(図 6)に対して,北海道東方沖地震の温根沼大橋地盤上の地 震動記録を平面 2 方向に入力した.この時の全ダンパー の相対変位一摩擦水平力の履歴を図 7 (x 方向),図 8

(y方向)に示す.配置2はx及びyの2方向に荷重を 発揮し,平面全体に効果を発現しているのに対し,配置 1はy方向には荷重を発揮しないがx方向には大きな荷 重を発揮していることが分かる.そこで,以下に示す平 面全体での相対変位および慣性力の最大値を比較した.

$$d = \sqrt{d_x^2 + d_y^2} \quad ma = \sqrt{(ma_x)^2 + (ma_y)^2}$$

$$d: 平面全体の相対変位$$

$$a: 平面全体の絶対加速度$$

$$d_x: x方向の相対変位$$

$$d_y: y方向の相対変位$$

$$a_x: x方向の絶対加速度$$

$$a_y: y方向の絶対加速度$$

$$m: 桁模型の質量$$

平面全体での最大相対変位は配置1では 4.5cm, 配置 2 では 2.5cm となり, 平面全体での最大慣性力は配置1で は 103kN, 配置2では 66.7kN となった. 平面全体での応 答は配置1より. 配置2の方が低減できており, 実際の 構造物に用いる場合は配置2の方が望ましいと考えられ る.

5. まとめ

本研究では、振動台実験によりリンク機構を有する回 転摩擦ダンパーに動的外力を加えた場合でもその動摩擦 モーメントは変位によらずほぼ一定であることを確認し た.実験では1方向にのみ効果を発現する配置になって いたが、実験結果から得られたデータを用いて実験装置 全体をモデル化し、動的解析を行うことによって、ダン パーの設置配置を変更することにより、ダンパーの効果 を平面全体に発現させ、平面全体の応答を低減できうる ことを示した.