並列処理による地盤・構造物連成系の地震応答解析

伊藤忠テクノソリューションズ 正会員 ○馬渕倉一 非会員 金伝栄,張衛紅,児玉剛,桐山貴俊

1. はじめに

FEM 解析の分野は、コンピュータ技術の進歩によって 飛躍的な発展を遂げている。最近では、構造物の地震時 挙動を高精度にシミュレートするため、構造物を詳細に モデル化し地盤との動的相互作用を考慮した大規模な数 値解析ができるようになりつつある. しかし、大規模な 地震応答解析の場合、計算時間が膨大となり実務上困難 となる. そこで、本研究では大規模な地震応答解析の実 用化を目指すことと、構造物の地震時挙動をより高精度 にシミュレートするため並列処理による地盤と構造物の 連成モデルによる非線形地震応答解析コードを開発する. 本報告では、実用性の検証とし弾性地震応答解析を行 った結果を報告する.

2. 並列処理の概要 1)

本研究の並列処理は、バランシング領域分割法²⁾(BDD 法)を使用している.

・BDD 法は、Balancing Neumann-Neumann 前処理付きの 領域分割法であり、解析対象となる領域 Ω を N 個の 部分領域 $\Omega^{(i)}$ に分割し、各部分領域ごとに計算処理を 行うことで全体領域の解を求める。(図1参照)

$$\Omega = \bigcup_{i=1}^{N} \Omega^{(i)} \quad (1)$$

・領域 Ω上の構造解析問題は、有限要素近似によって次 式が得られる.

$$Ku = f$$
 (2)

ここで、Kは実行マトリックス、uは節点変位 $^{\prime}$ クトル、 f は相当節点荷重ベクトルである.

・ある部分領域 i に対する実行マトリックス, 節点変位, 相当 節点荷重は、次式のように部分領域内部自由度(添字 I)と部分領域間境界自由度(添字B)に分けられる.

$$K^{(i)} = \begin{bmatrix} K_{II}^{(i)} & K_{IB}^{(i)} \\ K_{BI}^{(i)} & K_{BB}^{(i)} \end{bmatrix}$$
, $u^{(i)} = \begin{bmatrix} u_I^{(i)} \\ u_B^{(i)} \end{bmatrix}$, $f^{(i)} = \begin{bmatrix} f_I^{(i)} \\ f_B^{(i)} \end{bmatrix}$ (3) ーマーク法 (β =1/4, γ =1/2) を適用した陰解法を用いて

・式(2)は、サブストラクチャー法により次のように部分 領域間境界自由度に縮約できる.

$$Su_B = g$$
 (4)

$$S = \sum_{i=1}^{N} R_{B}^{(i)} \{ K_{BB}^{(i)} - K_{IB}^{(i)}^{T} (K_{II}^{(i)})^{-1} K_{IB}^{(i)} \} R_{B}^{(i)T}$$

$$g = \sum_{i=1}^{N} R_{B}^{(i)} \{ f_{B}^{(i)} - K_{IB}^{(i)T} (K_{II}^{(i)})^{-1} f_{I}^{(i)} \}$$

- ・式(4)を前処理付きの共役勾配法にて解く. 共役勾配法 の収束性は一般的に行列Sの条件数に依存する。条件 数が大きいほど収束が悪いとされている.
- ・BDD 法は、各領域において Neumann 問題を解いたと きの解にコースグリッドによる修正解を加えるアル ゴリズムとなっている. コースグリッドにおけるコー ス問題の導入により、残差が領域全体に早く伝播され ることで、領域分割数の増加に伴って条件数が大きく なるのを抑えられ、収束を加速できる、定式の詳細は 文献2)を参考されたい.

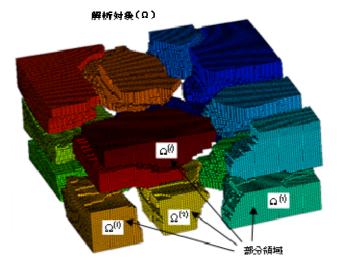


図1 並列解析のための領域分割

3. 解析機能の概要

並列処理に対応した地震応答解析は、数値積分にニュ

キーワード 並列計算、BDD法、地盤・構造物連成系地震応答解析

連絡先 〒100-6080 東京都千代田区霞が関3丁目2番5号 霞が関ビル

伊藤忠テクノソリューションズ(株) 科学システム事業部 TEL:03-6203-7368

地盤の非線形性は、3次元に拡張した R-O モデルによる全応力解析が可能で、R-O モデルのパラメータであるせん断剛性 G_0 、基準ひずみ $\gamma_{0.5}$ は地盤の拘束圧依存性が考慮できる。構造物の非線形性は、現状のところ骨組みモデルによるバイリニア・トリリニア型の履歴特性が整備されている。減衰は、部分毎に係数が設定できる要素別レーリー減衰が考慮できる。地震波の入力は、固定端と粘性境界による基盤入力が可能である。

4. 計算結果

並列処理による地震応答解析の実用性を検証するため、 31 階鉄骨造超高層ビル(140m)の詳細な解析モデルを 作成し、地盤と構造物の連成モデルの弾性解析を行った. 超高層ビルは柱・梁・床を詳細なソリッドでモデル化し た.(図2参照)表1に地盤の物性値を示す.解析モデ ルは、節点数51万、解析自由度150万である.

入力地震動は、**図3**に示す JR 鷹取の観測記録(Max: NS 方向=611,EW 方向=616,UD 方向=266Gal)を 2E(露頭)波として底面粘性境界を設け入力した.解析の積分時間間隔は 0.01 秒とし継続時間は 30 秒とした.

計算はコンピュータサーバ SunFire4600, 8CPUs を用い,3000 ステップの解析時間は54.5 時間となった.解析結果は、図4に15秒の変形図、せん断ひずみコンター図を示す.解析結果の妥当性は、1CPU で解析できるモデル規模の地震応答解析を行い、並列処理による解析結果と結果が概ね一致することを確認した.

5. おわりに

本検討で、100 万自由度を超える大規模モデルの地震 応答解析が 2,3 日で解析できることを確認した. 今後、 非線形問題を取り扱う場合は、積分時間間隔を細かくす る必要があるため計算時間がかかることが予想される. しかし、積分時間間隔の自動調整機能、予め主要動のみ 細かく積分時間間隔を設定することで、実務レベルで使 用可能であると考えており、更に検討を進めていく予定 である. また、様々な構造物の地震時挙動をシミュレー トするため、より高度な非線形機能を搭載していく予定 である.

表 1 地盤物性

	深さ	層厚	土質名	地盤物性		
	GL			ν	γt	Vs
	(m)	(m)			(kN/m3)	(m/s)
$\overline{}$	3.0	3.0	埋土	0.45	18.0	120
	8.0	5.0	シルト	0.49	16.0	150
	28.0	20.0	砂質土	0.49	18.0	220
	38.0	10.0	シルト	0.49	16.0	180
	60.0	22.0	砂質土	0.49	18.0	270
	100.0	40.0	粘性土	0.49	17.0	220
	150.0	50.0	砂質土	0.49	19.0	300

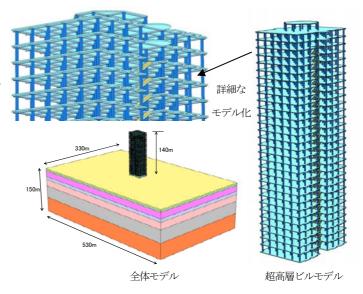


図 2 解析モデル

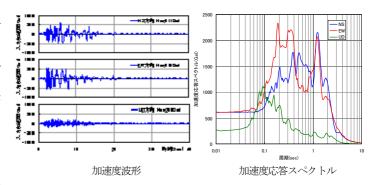


図3 入力地震波

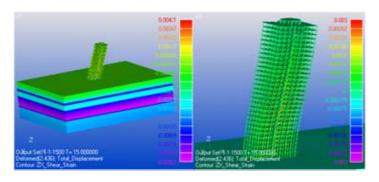


図 4 変形+せん断ひずみ分布図(15sec)

参考文献

- 1) 荻野正雄, 領域分割型有限要素法による超並列計算, 九州大学博士論文, 平成 15 年
- 2) J. MANDEL: Balancing domain decomposition, Communications on Numerical Methods in Engineering, Vol. 9, pp.233-241, 1993.