二層緩衝構造の緩衝特性に関する重錘落下衝撃実験

(株)	構研エンジニアリング	正会員	刈田 圭一	室蘭工業大学	フェロー	岸	徳光
(株)	構研エンジニアリング	正会員	川瀬 良司	室蘭工業大学	正会員	岡田	慎哉
(株)	構研エンジニアリング	正会員	牛渡 裕二	(株)構研エンジニアリング	正会員	鈴木(建太郎

1. はじめに

著者らは,既往の研究において擁壁の耐衝撃性 向上手法として、擁壁に伝達される衝撃力を緩和 しかつ分散させる目的で擁壁の落石衝突面に二層 緩衝構造を設置する手法を提案している.本研究 では,表層 RC 版が押し抜きせん断破壊を生じる 様な大きな衝突エネルギーの場合の緩衝性能およ び応力分散性能を把握することを目的に,緩衝構 造のみを対象とした重錘落下衝撃実験を実施した. 2.実験概要

本研究では,二層緩衝構造の落石防護擁壁への 適用を想定して実験を行っている.従って,実験 は重錘の衝突位置や衝突速度を精度良く制御可能 とするために,緩衝構造を水平に倒した状態でお こなっている.図-1 は実験概要図,図-2 は試 験体の形状寸法とその配筋状況,図-3 は伝達衝 撃応力測定平面位置図をそれぞれ示している.

実験は全て,質量 5t の鋼製重錘をクレーンを用 いて所定の高さまで吊り上げ,常に未使用の表層 RC版,裏層 EPS を用いる単一載荷として二層緩 衝構造中央点に自由落下させておこなっている.

実験ケースは,衝突エネルギーを E_k = 150kJ, 200kJ,300kJ と変化させた全3ケースとした.二 層緩衝構造の断面形状は,表層材が 15cm 厚の RC 版,裏層材が 50cm 厚の EPS 材とした. 3. 衝撃実験結果

3.1 衝擊力波形

図 - 4 (a)および図 - 4 (b)には,衝突エネルギー E_k = 150kJ および 300kJ の場合における重錘衝撃力 波形と伝達衝撃力波形分布を比較して示している.

重錘衝撃力波形をみると波動継続時間は 80ms 程度である.一方,既往の研究成果より重錘が落 石防護擁壁に直接衝突する場合の波動継続時間は 4ms 程度であり,二層緩衝構造を設置することで 波動継続時間は20倍程度に延長される.これより 二層緩衝構造は,既往の研究にて表層 RC 版の設 計エネルギーである E_k =140kJ 以下のエネルギー に対して緩衝効果が確認されているが,RC 版が 押し抜きせん断破壊を生じる様なエネルギー(E_k = 300kJ)の場合においても効率的に衝撃力を緩和 させる性能を有していることが明らかとなった. 重錘衝撃力波形および伝達衝撃力波形を比較する と最大伝達衝撃力は最大重錘衝撃力とほぼ等しい. 3.2 伝達衝撃力応力分布

図 - 5 (a)および図 - 5 (b)には,衝突エネルギー E_k = 150kJ および 300kJ の場合における X 軸方向 および Y 軸方向各点の伝達衝撃応力の応答分布波 形を示している.

(a)図の E_k = 150kJ の場合は,載荷点直下で最大
0.22MPa 程度の応力が発生していることが分かる.

キーワード 落石防護擁壁,二層緩衝構造,重錘落下衝撃実験,緩衝効果

連絡先 〒065-8510 札幌市東区北 18 条東 17 丁目 1 番 1 号 (株) 構研エンジニアリング 防災施設部 TEL.011-780-2813 FAX.011-785-1501

図 - 5 伝達衝撃応力分布波形

これは EPS が 55%程度圧縮された場合に発生する 応力に相当し, EPS の設計上の限界ひずみ値程度 であることを示している.また,X 軸方向および Y 軸方向における伝達衝撃応力は時間的にほぼ台 形状の分布性状となっており,0.1MPa 程度以上の 応力が版全体に発生し,荷重分散性が発揮されて いることが分かる.

(b)図の E_k = 300kJ の場合では,載荷点直下で最 大 0.4MPa 程度の応答値を示しており,これは EPS が 70%程度圧縮された場合に発生する応力に 相当し, EPS の設計上の限界値ひずみを超過して いることを示している.また,載荷点直下におい て 0.4MPa 程度の最大伝達衝撃応力が発生してい るものの,0.1MPa 程度以上の伝達衝撃応力は $E_k =$ 150kJ の場合と同様に X 軸方向および Y 軸方向と もに版全体に発生していることが分かる.これよ リニ層緩衝構造は $E_k = 300kJ$ の場合でも衝撃力を 分散させる性能を有していることがわかる. 3.3 衝撃力と衝突エネルギーの関係

図 - 6 には、本実験における重錘衝撃力および 伝達衝撃力を Hertz の接触理論式においてラーメ の定数を λ = 120,000kN/m² (二層緩衝構造を設置 しない場合の重力式擁壁実験結果より求めた値) および 3,000kN/m² とした場合の衝撃力算定結果と ともに示している.図より、二層緩衝構造を設置 する場合は λ = 3,000kN/m² とする Hertz の接触理 論式による算定値と同程度の値を示している.こ れは二層緩衝構造の RC 版が押し抜きせん断破壊 を生じるエネルギーにおいても、RC 版の著しい 損傷によるエネルギーの散効果と EPS 材の塑性変 形に伴う緩衝効果が発揮されているものと推察さ れる.また、二層緩衝構造を設置しない場合に比 べて擁壁に作用する重錘衝撃力が2割程度に減少 することが確認された.

4. まとめ

本研究では, 表層 RC 版が押し抜きせん断破壊 を生じる様な大きな衝突エネルギーの場合の緩衝 性能および応力分散性能を把握することを目的に, 緩衝構造のみを対象とした重錘落下衝撃実験を実 施した.

検討結果を整理すると以下のように示される. (1)二層緩衝構造の RC 版が押し抜きせん断破壊 を生じる様なエネルギー(E_k = 300kJ)においても, 二層緩衝構造は効率的に衝撃力を緩和させるとと もに荷重分散させる性能を有している.

(2)二層緩衝構造に作用する重錘衝撃力は,ラ
ーメの定数をλ = 3,000kN/m²とするHertzの接触理
論式による算定値と同程度の値を示す.

(3) 二層緩衝構造は,その設置により擁壁に作 用する重錘衝撃力を設置しない場合に比較して2 割程度に減少させることから、既設落石防護擁壁 の補強対策として有効である.