半剛結接合に関するデータベースの更新

室蘭工業大学 正会員 ○小室 雅人 室蘭工業大学 フェロー 岸 徳光 University of Hawaii W.F. Chen

1. はじめに

我が国では, 鋼骨組構造物の柱-はり接合部には溶 接接合が使われている.一方, 欧米諸国では, 高力ボ ルトとアングル材やプレート材を併用する接合形式が 広く採用されている.このような接合方法の場合には, 溶接接合のような剛結接合とは異なり, はり材に曲げ モーメント M が作用した場合, 柱とはり材間に相対的 な回転角 θ, が生じ, かつそれらの関係が非線形となる 特徴を有することが明らかになっている.一般にこの ような特性を示す接合を半剛結接合と呼んでいる.

著者らは,既往の研究で上述の半剛結接合を対象に, その実験結果を収録した接合部データベースを構築し てきた.本論文では,既往データベースに近年の実験結 果を追加,更新を行ったので,その概要を報告する.

2. 接合部データベースの概要

接合部データベースは, 1984 年に Kishi と Chen によっ て構築され, その後定期的な更新が行われてきた. これ までに 1936 年から 1996 年までの計 399 データが収録さ れている.

表-1には、接合部データベースに収録されている接 合形式および今回の更新前後におけるデータ数を、ま た図-1には各接合形式の概形を一覧にして示してい る.図より、収録されている7種類の接合形式は、いず れも高力ボルト(またはリベット)とアングル材あるい はプレート材から構成されるものである。

データベースには、各実験データについて接合形式 ごとに、(1)実験者と実験 ID、(2)部材および高力ボル トの種類、(3)アングル材あるいはプレート材の材料定 数、(4)接合部の形状寸法、および(5)曲げモーメントー 相対回転角 $(M - \theta_r)$ 関係などが収録されている.

また、データベースを管理するプログラム (SCDB) には、実験データに関する形状寸法および材料定数な どの情報をもとに、実験結果に対して最大3種類の接合 部剛性評価モデル (Frye-Morrisの多項式モデル、修正 exponential モデル、三要素パワーモデル)による解析値 が自動的に提供される機能を有している.

表-2には、新たに追加した実験データの内訳に関して、接合形式、実験者名および実験データ数を一覧にして示している。今回の更新では1996年以降に公表され

表-1 収録接合形式と更新前後のデータ数

ID	接合形式	データ数	
		更新前	更新後
Ι	Single web-angle / Single plate	54	54 (0)
	(図-1a参照)		
II	Double web-angle (図ー1b参照)	72	75 (3)
III	Top- and seat-angle	22	33 (11)
	with double web-angle (図ー1c参照)		
IV	Top- and seat-angle (図-1d参照)	57	74 (17)
V	Extended end-plate (図-1e参照)	136	166 (30)
VI	Flush end-plate (図ー1f参照)	32	58 (26)
VII	Header plate (図-1g参照)	26	26 (0)
· · · · · · · · · · · · · · · · · · ·		399	486 (87)

た実験データを中心に表-2に示す5つの接合形式に 対して計87データを追加した。

3. 実験データの一例

表-3には、実験データの一例として IV-62 の場合を 示している.表より、実験者名や実験年、使用部材やア ングル材の寸法、接合部形状パラメータの他、モーメン トー相対回転角関係が収録されていることが分かる.

また,図-2には,表-3に示した IV-62 および V-141 におけるモーメントー相対回転角関係をグラフ化して 示している.図には,SCDB で提供される剛性評価モデ ルによる解析値も併せて示している.図より,(a)では

キーワード:半剛結接合,データベース,モーメント-相対回転角関係 連絡先:〒050-8585 室蘭市水元町 27-1 室蘭工業大学 建設システム工学科 TEL 0143-46-5228 FAX 0143-46-5227

는 지 고 화

按百形八	天映有	ケーク奴
Double web-angle	J.G. Yang & G.Y. Lee ¹⁾ (2007)	3
Top- and seat-angle	C.W. Roeder et al. ²⁾ (1996)	1
with	A.S. Elnashai et al. ³⁾ (1998)	1
double web-angle	Z. Fu et al. ⁴⁾ (1998)	4
	L. Calado et al. ⁵⁾ (2000)	3
	M. Komuro et al. ⁶⁾ (2002)	2
Top- and seat-angle	J.B. Mander et al. ⁷⁾ (1994)	4
	C. Bernuzzi et al. ⁸⁾ (1996)	1
	N. Kubo et al. ⁹⁾ (1996)	5
	M. Komuro et al. ⁶⁾ (2002)	1
	Y. Sato et al. ¹⁰⁾ (2007)	6
Extended end-plate	B. Bose et al. ¹¹⁾ (1996)	9
	L.R.O. Lima ¹²⁾ (2003)	7
	A.M. Girão Coello ¹³⁾ (2004)	8
	A.M. Girão Coello ¹⁴⁾ (2007)	3
	J.M. Cabrero & E. Bayo ¹⁵⁾ (2007)	2
	J.G. Yang & G.Y. Lee ¹⁾ (2007)	1
Flush end-plate	P. Zoetemeijer ¹⁶⁾ (1981)	7
	C. Bernuzzi et al. ⁸⁾ (1996)	1
	B. Bose et al. ¹¹ (1996)	9
	N.D. Brown & D. Anderson ¹⁷⁾ (2001)	1
	A.W. Thomson & B.M. Broderick ¹⁸⁾ (2002)	3
	A.M. Girão Coello14) (2007)	4
	J.G. Yang & G.Y. Lee ¹⁾ (2007)	1

表-2 新たに追加した実験データの内訳

中睑虫

カギレ

3 種類, (b)では 2 種類の評価モデルによる結果が示さ れている.いずれの場合においても,修正 exponential モ デル(黒実線)は実験結果(〇印)を正確に再現可能で あることが分かる.従って,同モデルを用いることに よって離散データである実験結果を連続データとして 扱うことができることから,骨組解析プログラムに同 モデルを組み込むことによって,実 $M - \theta$,関係を忠実 に反映させた骨組解析が可能となることが分かる.

4. まとめ

半剛結接合に関するデータベースに新たに87データ を追加した.また,各実験データに対する接合部剛性評 価モデルの各パラメータを計算した.

今後は、定期的なデータベースの更新によって、よ り多くの実験データの収録を行うとともに、これらの 成果を世界各国の研究者などに提供できるようにイン ターネット上での公開に向けた検討を行う予定である.

参考文献

- Yang, J.G. and Lee, G.Y. (2007) Analytical models for the initial stiffness and ultimate moment of a double angle connection, *Eng. Struct.*, 29(4), 542-551.
- 2) Roeder, C.W., Knechtel, B., Thomas, E., Vaneaton, A., Leon, R.T., and Preece, F.R. (1996) Seismic behavior of older steel structures, *J. Struct. Eng.*, 122(4), 365-373.
- Elnashai, A.S., Elghazouli, A.Y., and Denesh-Ashtiani, F.A. (1998) Response of semirigid steel frames to cyclic and earthquake loads, J. Struct. Eng., 124(8), 857-867.
- Fu, Z., Ohi, K., Takanashi, K., and Lin, X. (1998) Seismic behavior of steel frames with semi-rigid connections and braces, *J. Constr. Steel Res.*, 46(1-3), 440-441.
- Calado, L., De Matteis, G., and Landolfo, R. (2000) Experimental response of top and seat angle semi-rigid steel frame connections, *Mater. Struct.*, 33(8), 499-510.
- Komuro, M., Kishi, N., and Matsuoka, K. (2002) Static loading tests for moment-rotation relation of top- and seat-angle connections, J. Constructional Steel, JSSC, 10, 57-64 (in Japanese)

表-3 収録データの一例 (IV-62 の場合)

- Mander, J.B., Chen, S.S., and Pekcan, G. (1994) Low-cycle fatigue behavior of semi-rigid top-and-seat angle connections, *AISC Eng. J.*, 31(3), 111-122.
- Bernuzzi C., Zandonini R., Zanon P. (1996) Experimental analysis and modelling of semi-rigid steel joints under cyclic reversal loading, J. Constr. Steel Res., 38(2), 95-123.
- Kubo, N., Yoshida, T., Hashimoto, K., and Tanuma, Y. (1999) Column influence on the moment-rotation behaviour of semirigid angle connections, *J. of Constructional Steel*, JSSC, 7, 427-434 (in Japanese)
- Sato, Y., Komuro, M., and Kishi, N. (2007) Experimental study on moment-rotation of top- and seat-angle connections, *J. Constructional Steel*, JSSC, 121-128 (in Japanese)
- Bose, B., Youngson, G.K., and Wang, Z.M. (1996) An appraisal of the design rules in Eurocode 3 for bolted end-plate joints by comparison with experimental results, *Proc. Inst. Civ. Eng. Struct. Build.*, 116(2), 221-234.
- 12) Lima, L.R.O. de (2003) Behaviour of structural steel endplate joints subjected to bending moment and axial force, Ph. D. Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro. (in Portuguese)
- Girão Coelho, A.M., Bijlaard, F.S.K., Simões da Silva, L. (2004) Experimental assessment of the ductility of extended end plate connections, *Eng. Struct.*, 26(9), 1185-1206.
- 14) Girão Coelho, A.M. and Bijlaard, F.S.K. (2007) Experimantal behaviour of high strength steel end-plate connections, J. Constr. Steel Res., 63(9), 1228-1240.
- 15) Cabrero, J.M. and Bayo, E. (2007) The semi-rigid behaviour of threedimensional steel beam-to-column joints subjected to proportional loading. Part I. Experimental evaluation, J. Constr. Steel Res., 63(9), 1241-1253.
- 16) Zoetemeijer, P. (1981) Semi-rigid bolted beam-to-column connections with stiffened column flanges and flush-end plates, *In Joints in Structural Steelwork*, Pentech Press, 2.99-2.118.
- Brown, N.D. and Anderson, D. (2001) Structural properties of composite major axis end plate connections, *J. Constr. Steel Res.*, 57(3), 327-349.
- 18) Thomson, A.W. and Broderick, B.M. (2002) Earthquake resistance of flush end-plate steel joints for moment frames, *Proc. Inst. Civ. Eng. Struct. Build.*, 152(2), 157-165.