圧電アクチュエータを用いた RC 構造欠陥検出の検討

〇北見工業大学 学生会員 李 昕宇 北見工業大学 正会員 シェリフ ベスヤロン 北見工業大学 フェロー 大島 俊之 北見工業大学 正会員 山崎 智之 北見工業大学 正会員 三上 修一

1. はじめ

戦後まもなくに作られた日本の橋梁群が寿命を迎えよう としている現在、目視点検以外の簡便かつ容易な性能評価 方法の確立が急がれている。本研究では、実験用に製作し た鉄筋コンクリート(RC)部材を用いて損傷検出を目的に積層 圧電アクチュエータを使用した振動実験を行い、各実験ケ ースにおける RC 部材の損傷の違いによる加速度応答の変化 を捉え、損傷の検出および損傷位置の特定を行った。ここ では鋼板貼り付け量の違いを模擬的に損傷状態として実験 を行った。

2. 実験概要

(1) 実験方法

実験では欠損部を設けた供試体を用いて、欠損部を鋼板 で埋めることで損傷ケースをいくつか作成した。そのケー スごとに振動を与えて出力された結果(加速度波形)にフーリ エ解析を用いて計算したパワースペクトル密度(PSD)の変化 から損傷の有無を判断し、損傷位置を特定する。振動実験 での加振波について、sweep 波(7 秒間で周波数が 100比 から 800比 まで一様に変化する振動)を与えた時の PSD 結果から卓 越振動数である 359.4½ と 671.9½ を予めピックアップし、 その卓越振動数を sin 波の振動数として振動させてやること でより詳しい実験を行った。各損傷ケースにおいて、sweep 波1種類、sin 波2種類の計3種類の振動を1つずつ与えて その応答を7つの加速度計(1ch-7ch)で計測する。その設置位 置を図1に示す。

キーワード: ヘルスモニタリング、損傷検出、モード特性 連絡先: 020-8507 北海道北見市公園町 165番地 Tel: 0157-26-9488 実験供試体として用いた RC 部材の寸法は 100×200× 1400(m)で、欠損部として設けた溝の寸法を 100×200×20(m) とした。供試体の断面図についても図1に示す。

(3) 加振器

振動の発生源として積層圧電アクチュエータを用いた。 このアクチュエータは電圧(0-100V)をかけることで体積が増 減し、その体積の増減を利用して振動を起こしている。供 試体に振動を与えるため、荷重(初期荷重)をかけてアクチュ

エータと供試体を固定している。

(4) 実験条件

(5) 損傷ケース

初期荷重:196.133N(20kgf) 加振波:sweep波(100-800Hz)7s sin波(359.4Hz,671.9Hz)

サンプリング周波数:4000Hz 計測時間:8s 加速度計:1~7ch

図2 健全状態写真

供試体作成時に欠損として溝を設けており、その溝に厚 さ5mmの鋼板を3枚重ねてはめ込んだ状態を健全状態とし、 その鋼板を外していくことで損傷状態とした。損傷ケース を次に示す。

損傷ケース 0(d0):健全状態(図 2)

損傷ケース1(dl):鋼板が1枚欠損した状態

損傷ケース2(d2):鋼板が2枚欠損した状態

損傷ケース3(d3):鋼板が3枚欠損した状態

3. 損傷検出解析の理論説明

実験よりチャンネル i で測定された加速度波をスペクト ル解析して得られた周波数 fに対するパワースペクトルの大 きさを関数 $_{G_i(f)}$ で表わす。次に式(1)のように関数 $_{G_i(f)}$ の 健全状態と損傷状態の差(絶対値)を $_{D_i(f)}$ とし、損傷による 変化の大きさを表わす式として定義する。

ここで、 $G_i(f)$:健全状態のパワースペクトル、 $G_i^*(f)$:損 傷状態のパワースペクトルを表わす関数である。パワース ペクトルがそれぞれの測定位置 $i \sigma_{f_1}$ から f_m までの周波数 で計算されるとき、 $D_i(f)$ は損傷の変化を表わすマトリクス [D]として式(2)のように定式化することができる。式(2)にお いてn:測定点の数(チャンネル数)、mスペクトル解析で得 られた周波数の数を表す。したがって、[D]の行はチャンネ ルの番号を示し、列は周波数の変化を示している。この[D] においてチャンネル毎に全周波数の $D_i(f)$ を合計したものを TC(Total_Change)とし(式(3))、損傷の有無や位置を表わす指 標とする。

$$D = \begin{bmatrix} D_{1}(f_{1}) & D_{1}(f_{2}) & \cdots & D_{1}(f_{j}) \cdots & D_{1}(f_{m}) \\ D_{2}(f_{1}) & D_{2}(f_{2}) & \cdots & D_{2}(f_{j}) \cdots & D_{2}(f_{m}) \\ \vdots & \vdots & \cdots & \vdots \\ D_{i}(f_{1}) & D_{i}(f_{2}) & \cdots & D_{i}(f_{j}) \cdots & D_{i}(f_{m}) \\ \vdots & \vdots & \cdots & \vdots \\ D_{n}(f_{1}) & D_{n}(f_{2}) & \cdots & D_{n}(f_{j}) \cdots & D_{n}(f_{m}) \end{bmatrix}$$

$$TC = \begin{cases} \sum_{j=1}^{m} D_{1}(f) \\ \sum_{j=1}^{m} D_{2}(f) \\ \vdots \\ \sum_{j=1}^{m} D_{2}(f) \\ \vdots \\ \sum_{j=1}^{m} D_{i}(f) \\ \vdots \\ \sum_{j=1}^{m} D_{n}(f) \end{bmatrix}$$

4. 実験結果

実験結果の一例として sweep 波を与えた時の 5ch の加速度 計から得た加速度波形を図3に示す。d0とd3を比較すると d3の方でより大きな加速度が得られている。図4に1chと 5ch における PSD を示す。損傷が大きくなると卓越振動数 (359.4比, 671.9比)の PSD が増加傾向にある。さらに、図4に おける縦軸を対数表示し、横軸を 1000比 まで表示したグラ フが図5である。ここではd0とd3の状態だけを表示したが 1ch と 5ch を比較すると 5ch の方が d0 と d3 変化が大きく現れ ていることがわかる。この変化を損傷による PSD の差として チャンネルごとにまとめたものを Total Change として図6中 の d0-d3 グラフで示した。同様に d0-d1 と d0-d2 を比較した 結果も図6に示す。横軸のChannel Number は加速度計の番号 (位置)を示しており図1の加速度計の ch 番号と一致する。 図 6 において加速度計 5ch の変化が著しく大きいことから 5ch 付近に損傷が存在していることを示している。特に、d0d3の比較で5chの変化が一番大きい。また、別の損傷ケース によっても応答に変化があることから、鋼板一枚の差でも 損傷の有無が確認できることが分かる。

5. まとめ

今回の実験から振動特性を比較することにより RC 構造物 における損傷の有無、損傷位置特定が可能であることがわ かった。積層圧電アクチュエータによる sweep 加振法だけで なく、sweep 加振によって導き出された卓越振動数を利用し た sin 波で加振させてやることで、健全・損傷状態でのより 明確な振動特性の変化を把握できることが確認された。今 後、実際の RC 構造の損傷についてどのような損傷が検出可 能であるか検討する必要がある。

1)Beskhyroun S., Mikami S., and Oshima T., Nondestructive damage detection scheme for steel bridges, *Journal of Applied Mechanics JSE*, Vol. 9, pp.63-74, 2006