塩害・凍結融解作用を受けた RC 床版の耐荷力低下に関する実験研究

日本大学大学院 学生会員 鈴木 浩行 日本大学 正会員 阿部 忠,木田 哲量,水口 和彦 太平洋セメント(株)正会員 田中 敏嗣

1. はじめに

鋼道路橋鉄筋コンクリート (RC) 床版は,大型自動車 の繰り返し走行による疲労損傷を受けると同時に,寒 冷・積雪地域では,冬期に凍結防止剤の散布による塩害 劣化が進行し,橋梁の維持管理上重要な問題となってい る。とくに,RC 床版のひび割れ発生後は,そのひび割 れに凍結防止剤散布による塩水が浸透して凍結すること から,塩害と凍害が同時に発生している。そこで本研究 では,RC 床版の凍結防止剤の散布による塩害と凍結融 解作用¹による劣化現象に着目し,これらの作用を受け た RC 床版の耐荷力の低下率を実験解析するとともに, 変形性状および破壊メカニズムを検証した。

2. 供試体概要

2.1 使用材料: コンクリートには, 普通ポルトランドセ メントと最大寸法 20mm の粗骨材を使用し, 鉄筋には SD345A, D10 を用いた。本実験に用いたコンクリート の圧縮強度は 30N/mm² であり、鉄筋の降伏強度は 370N/mm², 弾性係数は 200N/mm²である。また, 凍結防 止剤には塩化ナトリウムを用いた。

2.2 供試体寸法および鉄筋の配置:供試体は,道路示方書・同解説²⁾の規定に基づいて,大型車両の1日1方向あたりの計画交通量を500台未満と設定して,寸法と鉄筋配置を決定し,その1/2モデルとした。供試体寸法は,

全長を147cm,支間120cmとし,床版厚は11cm,鉄筋 は複鉄筋配置とした。引張側の鉄筋D10を軸方向に12cm 間隔,軸直角方向に10cm 間隔で配置し,有効高さはそ れぞれ8cm,9cmとする。また,圧縮側の鉄筋量は引張 側の鉄筋量の1/2 配置した。供試体寸法および鉄筋配置 を図-1に示す。

3. 実験方法

3.1 走行振動荷重による応力履歴 RC 床版:本実験では, 実橋 RC 床版に作用する大型自動車の荷重変動を想定し た走行振動荷重実験を行い,応力を履歴させる。走行振 動荷重実験は,左支点に輪荷重を載荷し,これを左支点 から右支点を1往復するものである。本実験の荷重振幅 は,基準荷重に対して±20%,±30%とし,周期1.8Hzの 片振り荷重とする。荷重の大きさは1走行ごとに 5.0kN ずつ増加する段階状荷重とし,応力履歴は荷重 60kN ま でとした。供試体名は,荷重振幅±20の供試体を V20, 荷重振幅±30の供試体を V30 とする。

3.2 凍結融解作用:走行振動荷重実験によって応力履歴 したRC床版の上面にエンビ管で110cm×110cmの枠を製

図-1 供試体の形状寸法

作し、凍結防止剤である塩化ナトリウム 40g を週3回づつ1年間散布した。その後は海水を散布し、氷点下温度 (-20℃)の冷凍庫で夜間12時間凍結させ、凍結後は 融解して再度海水の散布を行う。この作業を300回繰り返 した。

3.3 走行振動荷重による耐荷力実験:本供試体は塩害と 凍害を受けたことで,走行面が5-7mm程度土砂化してい ることから,走行面をプライマーで表面処理した後に走 行振動実験を行った。実験方法は、応力履歴を与えた際 の実験方法と同様とした。なお、荷重は一往復走行ごと に0kNから5kNずつ供試体が破壊に至るまで増加させる 段階荷重とした。また、本実験における最大耐荷力とは、 一往復走行を維持した最大荷重とする。

3.4 EPMAによる分析方法:塩化物イオンの分析には, EPMAを用いた。まず、コア試験体を縦半分に切断し、 メタクリル樹脂により補強した後、切断面を観察面とし て研磨した。本実験における発錆限界濃度は、コンクリ ート標準示方書³⁾に示されている1.2kg/m³とする。図 -2、3より、凍結防止剤である塩化ナトリウムを1年間散 布し、その後凍結と融解を300回繰返した結果、塩化物イ オンは供試体表面から55mmの位置まで浸透していた。

4. 実験結果および考察

4.1 押抜きせん断耐荷力:表-1より,荷重振幅±20%の場合,健全なRC床版供試体RC-V20-1,2の最大耐荷力の平均は141.6kN,塩害・凍害を受けたRC版供試体S・

キーワード:塩害,凍結・融解,走行振動荷重,押抜きせん断破壊 連絡先:〒275-8575 千葉県習志野市泉町1-2-1,日本大学生産工学部土木工学科,047-474-2459

F-RC-V20 は 120.2kN であったことから, 耐荷力比が 0.85 となり, 塩害・凍害を受けた RC 床版供試体は 15%耐荷 力が低下した。また, 荷重振幅±30%の場合は, 健全な RC 床版供試体の平均耐荷力は 140.5kN, 塩害・凍害を受 けた RC 床版供試体 S・F-RC-V30 は 123.5kN であること から, 耐荷力比は 0.88 となり, 塩害・凍害を受けた RC 床版供試体は 12%耐荷力が低下している。

4.2 破壊状況:図-4より,健全な RC 床版の下面は, RC-V20,V30ともに軸直角方向に10cm間隔,軸方向に 10cm~12cm間隔でひび割れが発生し,格子状を形成し ている。このひび割れ間隔は,軸直角方向および軸方向 に配置した鉄筋間隔とほぼ同じ寸法である。次に,塩害・ 凍害を与えた RC 床版供試体の場合,S・F-RC-V20,V30 ともに健全な RC 床版供試体と同様,ひび割れ間隔は, 軸直角方向・軸方向に配置した鉄筋間隔とほぼ同じ寸法 で発生し,格子状を形成している。最終的には全供試体 ともに押抜きせん断破壊に至った。また,塩害・凍害を与 えた RC 床版供試体では,健全な RC 床版に比してコン クリート部のはく離が著しい。

4.3 荷重とたわみの関係:図-5より,たわみは健全な供 試体 RC-V20, V30ともに荷重 80kN 付近まで線形的に増 加し,その後の荷重の増加でたわみの増加が大きくなる。 これに対して塩害・凍害を受けた RC 床版供試体は,荷重 60kN 付近はでは線形的に増加し,その後の荷重の増加で たわみの増加は大きくなっている。また,健全な RC 床 版供試体と塩害・凍害を受けた床版供試体のたわみを比 較すると,健全な RC 床版供試体に比して,塩害・凍害を 受けた RC 床版供試体の方がたわみの増加量が大きくなっ ている。なお,塩害・凍害を受けた RC 床版供試体は,応 力を履歴させた際に生じた残留たわみを初期値とした。

5. まとめ

- ①EPMA 解析 より,塩害・凍害を与えた RC 床版の塩 化物イオンは供試体表面から55mmの位置まで浸透し ており,発生限界濃度を超えている。
- ②押抜きせん断耐荷力は、塩害・凍害によって最大で15% 程度低下する。これは、凍結融解によるひび割れの拡 大および断面欠損によるものであると考えられる。
- ③破壊状況は、全ての供試体で格子状のひひ割れが発生 した後、押抜きせん断破壊に至った。
- ④荷重とたわみの関係では、健全な RC 床版供試体に比して塩害・凍害を受けた RC 床版供試体の方がたわみの増加量が大きい。

参考文献

1)長谷川寿夫,藤原忠司:コンクリート構造物の耐 久性シ リーズ 凍害

- 2)日本道路協会:道路橋示方書·同解説Ⅰ,Ⅱ,Ⅲ
- 3)土木学会:コンクリート標準示方書(施工編)