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１．Introduction  
 The finite element method (FEM) is widely used numerical method in fracture mechanics to determine the stress field 
near a given discontinuity (material or geometric). However, in order to capture the stress singularity occurring near the 
crack-tip, it is necessary the use of extremely fine meshes around the crack-tip, which reduces its efficiency, or the use of 
specialized elements of the singular type. In this particular, when studying crack growth phenomena, working with the 
FEM can become cumbersome, because the precise discretization of the discontinuity must be preformed for each 
configuration of the discontinuity during crack growth. To address these deficiencies, the scaled boundary finite element 
method (SBFEM) recently developed by Wolf and Song, which tries to combine the advantages of FEM and boundary 
element method (BEM) with unique properties of its own, is emerging as an efficient alternative numerical method for 
crack analysis. Authors and other researcher have presented the versatility of SBFEM to compute the fracture 
parameters: stress intensity factors (SIFs), T-stress and higher order terms of the crack tip stress field [1] and crack 
propagation simulation [2].  
 However, SBFEM has certain limitations such as requirement the scaling of material variations with relative to the 
so-called scaling center, difficult to deal patch load within the domain, and considering linear elastic material behaviors 
for elastostatics problems. These SBFEM’s weaknesses can be FEM’s strengths. Therefore, it is often desirable to couple 
the SBFEM with FEM to overcome these limitations of both methods. To our knowledge, none of the previous studies 
have addressed the fracture analysis using coupling SBFEM-FEM. It is often advantageous to use SBFEM only in the 
sub-domains closed to cracks, where their capabilities can be exploited to the greatest benefit and FEM in areas away 
from cracks. In this paper, a coding of the coupling of SBFE-FEM is developed and then the validity of the proposed 
coupling method is examined by analyzing a 2D crack problem. 
2.  Coupling the SBFE -FEM  

 Consider the problem domain Ω is divided into two non-overlapping domains – ΩSBFEM, SBFEM domain and 
ΩFEM, FEM domain, i.e. Ω = ΩSBFEM ∪ ΩFEM, with interface boundary, ΓI as shown in Fig. 1. In Fig. 1, e, s (gray 
circle), and i (black circle) present the nodes on FEM, SBFEM region and interface boundary, respectively. The coupling 
formulation is as follows.  
 In the FEM formulation, the equilibrium equation becomes  

 
⎭
⎬
⎫

⎩
⎨
⎧=

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

i
e

i
e

f
ii

f
ie

f
ei

f
ee

P
P

u
u

KK
KK   (1) 

where, the subscripts i and e designate interaction and non-interaction nodes 
as shown in Fig.1, respectively and superscript, f designate for the FEM. 
 Similarly, in SBFEM formulation, the equilibrium equation becomes  
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where, the subscripts, i and s designate interaction and non-interaction nodes for the SBFEM region as shown in Fig.1, 
respectively and superscript, s designate for the SBFEM. 

Finally the compatibility requirement along the interface Γi is introduced as 
  })]{([}ˆ)]{,([)},({ uNuyxNyxu η==        over ΓI (3) 
where N(x, y) and N(η) are the shape functions of FEM and SBFEM, respectively and û & u are the nodal displacement 
This equation can be satisfied exactly over the entire interface. Due to the compatibility of the displacements and 
equilibrium of the forces at the interaction nodes between FEM and SBFEM regions, the stiffness matrices of FEM can 
be added to the stiffness matrix of SBFEM as  
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Eq. (4) is full system equation of the coupling method. The stiffness matrix can be assembled to form the system 
stiffness matrix without any difficulty. In fact, the assembly procedure is the same as usually used in the FEM. 
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Fig 1. Domains contains SBFEM and 
FEM regions 
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3.  SBFEM formulation for fracture parameters  
 To compute the fracture parameters i.e. SIFs and T-stress and 

higher order terms of the crack-tip stress fields, authors have presented a 
simple and direct formulation by comparing the classical linear elastic 
field solution (Williams’ eigenfunction series) in the vicinity of a 
crack-tip with the SBFEM the stress and displacement fields along the 
radial direction emanating from the crack tip in [1]. The necessary 
condition of the formulation is that the scaling center is chosen at the 
crack-tip that leads to only the boundary, but not the straight crack 
faces and faces passing through the crack tip is discretized. The 
presented formulation for SIFs and T-stress are as follows.  
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This where, yσ̂ and xσ̂ are the stress components along perpendicular and 
parallel to crack surface, respectively; r̂ is the radial distances of the 
boundary nodes from scaling center, and c is the integration constant. In 
this paper only the basic equations of the proposed formulation are 
presented. For a more detailed description we refer to [1]  
4.  Validation of SBFE-FEM  

 A computer coding in MATLAB was developed on the base of above 
formulation and a three-point bending beam with single edge crack at the 
middle was analysed to demonstrate the effectiveness of the coupled 
method. The main objective of the analysis is to compute the fracture 
parameters - SIF and T-stress. Near crack region was model from SBFEM 
and other regions were model from FEM. The discretization employed in 
this study consisted of three-node iso-parametric quadratic line elements on 
the boundary for SBFEM region and eight-node iso-parametric quadratic 
elements for FEM regions.  

The schematic diagram is as shown in Fig.2, where L and D are the span 
and depth of beam respectively and a is the crack length. The applied point 
load per unit thickness was P = 1 unit at middle. The analyses were carried 
out using plane strain condition with Young’s modulus E = 1.0 and Poisson’s 
ratio υ = 0.3. Unit thickness was assumed for all the specimens. All units are 
consistent with that of E. Only a half of the specimen (hatched portion in 
schematic diagrams) was modeled by virtue of symmetry. The problem was 
analysed with span to depth ratio L /D = 4 and the relative crack length, a /D 
= 0.2. A typical FE-SBFEM model with LS /LF = 0.25 and FEM model used 
for analysis are given in Fig. 3 (a), where LS and LF are length of SBFEM 
region and FEM region, respectively, and Fig 3(b) respectively. 

 The computed results of the normalized SIFs, KI/σ0(πa)1/2 and  the 
normalized T-stress, T/σ0,for three different length ratios, LS /LF are 
presented in Table 1,where, σ0= 3PL/2D2 and the ‘ratio’ is the comparison of the computed results with respect to the 
references results. These SBFE-FEM results of the normalized SIFs are compared with the results obtained by Guinea et 
al. (1998), while the computed normalized T –stress are compared with the results obtained by hybrid crack element 
method from [3]. The comparison shows that SBFE-FEM results are in an excellent agreement with the references values. 
Fig.4 is presented the stress, σx contours of FE-SBFEM analysis with 166 DOFs and FEM analysis with 1426 DOFs. 
5.  Conclusion  

In this paper, a coupling of the newly developed SBFEM and the 
traditional FEM has been implemented for two-dimensional 
linear-elastic fracture. The coupling of FEM with SBFEM is a 
straightforward process and the coding of SBFEM can be easily 
inserted in FEM coding. The numerical examples show that the 
efficiency and accuracy of the proposed coupled method to compute 
stress near crack-tip. When compared with FEM, the complexity of 
crack modeling can be significantly reduced by the coupled method.  
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Fig. 2.  Schematic diagram 
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Table 1. Computed results 

* Ratio with the values (0.312 & 0.2355) from [3]

0.25 0.3101 0.99 0.2353 1.00
0.50 0.3090 0.99 0.2361 1.00
0.75 0.3083 0.99 0.2367 1.01

Normalized SIFs Normalized T-stressLS /LF
Present PresentRatio Ratio
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Fig.3 Analysis models (a) FE-SBFEM 
and (b) FEM 

Fig.4. Stress, σx contour of (a) FE-
SBFEM and (b) FEM 
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