コンクリート支保の劣化を考慮したニアフィールドの長期力学的挙動の検討(その2)

―処分孔竪置き方式における解析的検討―

㈱竹中土木	正会員〇西村繭果				
㈱竹中工務店	正会員	重野喜政,	高治一彦		
日本原子力研究開発機構	正会員	棚井憲治			

1. はじめに

本論文では,既往のニアフィールドの長期力学連 成解析手法¹⁾について,その1で示した支保劣化モデ ルを導入して処分孔竪置き方式における解析を行い, 支保の劣化挙動の影響を検討する.

2. 解析条件

図1に解析モデルと諸条件として岩盤掘削前の初 期応力分布,排水境界および境界条件を,表1に各 材料の構成モデル,表2,3に連成解析における材料 物性¹⁾を示す.初めに処分坑道と処分孔の掘削解析に より岩盤と支保の掘削後の応力を求め,次に人工バ リア,埋め戻し材を設置して処分場閉鎖後1万年を 対象期間とするニアフィールドの長期力学連成解析 を行う.連成解析においては,緩衝材とオーバーパッ クの自重を考慮し,オーバーパックは表2に示す条 件で腐食膨張させる.緩衝材と埋め戻し材はt=0y で飽和が完了しているものとする.支保は,その1 で示した劣化モデルで硬化係数H=Go/2000とした ケース(Case1)と,比較のため弾性体と仮定した劣 化を考慮しないケース(Case2)の2ケースを想定し

て解析する.解析コードには MuDIAN を用いた.

表 1 各材料の構成モデル

材 料	坑道掘削解析 処分孔掘削解析	長期力学挙動解析		
岩盤	Mohr-Coulomb モデル	コンプライアンス可変型構成方程式		
緩衝材・埋め戻し材		関ロ−太田モデル		
コンクリート支保	弾性モデル	劣化モデル		

表 2 材料物性¹⁾(岩盤,支保,オーバーパック)

	衣 2 内科初注 (右盤、文保、オーハーハック)											
	密度	1.890	Mg m ⁻³		密度	2.2	Mg m ⁻³		密度	6.63 Mg m ⁻³		
	弾性係数	2,500	MPa	1	初期等価弾性係数	3,400	MPa	+	弾性係数	210,000 MPa		
	一軸圧縮強度	16.3	MPa	п	ポアソン比	0.2	-		ポアソン比	0.3 -		
岩	ポアソン比	0.186	-	ンク	初期圧縮強度	30.5	MPa	Ĩ	【腐食膨張の仮定条件】			
	粘着力	5.2	MPa	リー	最終圧縮強度	0.305	MPa	ĺ,				
盤	内部摩擦角	25.0	۰	ト支	劣化を律する係数	0.001	y-1	ック	 ・腐食により体積は3倍に膨張 ・膨張変形は相似形を保つ ・4750年間で厚さ190mmが全腐食 ・モ=50yから腐食膨張開始 			
	引張強度	1.63	MPa	保	内部摩擦角	0	۰	~				
	n ₀	30	-		硬化係数(Case1)	G ₀ /2000						
	m	20	-									

表 3 材料物性¹⁾(緩衝材・埋め戻し材)

関ロー太田モ	デル		緩衝材	埋め戻し材
乾燥密度		${\rm Mg}~{\rm m}^{-3}$	1.60	1.80
ケイ砂混合率		wt %	30	60
圧縮指数	λ	-	0.117	0.066
膨潤指数	к	1	0.043	0.025
ポアソン比	ν	-	0.117	0.3
限界状態パラメータ	М	-	0.63	0.49
二次圧密係数	α	-	1.0×10^{-3}	1.0×10^{-3}
初期体積ひずみ速度	ν ₀	h ⁻¹	1.02×10^{-8}	1.02×10^{-8}

キーワード:放射性廃棄物,人工バリア,支保劣化モデル,ニアフィールド長期力学連成解析 連絡先:〒136-8570 東京都江東区新砂1-1-1 TEL:03-6810-6200 FAX:03-6660-6304

3. 解析結果

図2にCase1における支保の劣化挙動として、コン クリート支保の相当応力と圧縮強度の経時変化を示す. 図より、劣化により支保の圧縮強度は時間とともに低 下し、t=800y頃に支保の相当応力と同程度となって 塑性化する.降伏後の相当応力は劣化の進展に伴って 低下するが、硬化係数の影響によりt=1,000y頃から ある程度強度が回復する.

図 3 に緩衝材 / 岩盤境界部の変形量を示す.t = 1,000 y 頃までは両ケースでほぼ同様の変形挙動を示す が,その後は支保劣化の有無によって徐々に変形挙動 が異なっていき、1 万年後において Case1 の処分孔口

(H=4.5m) における変形量は支保劣化により 10mm程度増大する結果となった.

図4に1万年後における緩衝材と埋め戻し材の破壊 接近度コンターを示す.支保劣化を考慮した Caes1 で は、処分坑道内の埋め戻し材の破壊接近度が Case2 よ りも高く、特に支保近傍においては劣化による変形に 伴って軸差応力が増大し、破壊に近い状態にあること が確認できる.

図5にCase1のXZ断面における岩盤応力分布を示 す.岩盤クリープによって早い段階で孔壁近傍の応力 は低下し,周方向,半径方向ともに時間の経過に伴っ て応力緩和が広がって変形が奥行き方向に進行する. 最終的には応力緩和領域はCase1の方がやや広くなる.

4. まとめ

支保の劣化をモデル化した処分孔竪置き方式におけ るニアフィールド長期力学連成解析を行った結果,支 保の降伏後の挙動が岩盤,緩衝材および埋め戻し材の 変形や応力状態に顕著な影響を及ぼすことが明らかと なった.本検討では降伏関数として便宜的にTrescaモ デルを用いたが,ニアフィールドの力学的挙動評価に おいては,支保の劣化挙動を適切にモデル化して連成 解析に導入することが重要といえる.

今後は実現象に即した劣化モデルの構築を目的とし て、劣化コンクリートの降伏後の性状や破壊における 拘束効果を把握するために力学試験データを蓄積する 必要がある.

参考文献

 西村,棚井,高治,重野,下河内:ニアフィールドの長期力学 連成解析手法の構築,JAEA-Research 2007-004,2007

図 4 破壊接近度コンター図

