CCDカメラから推定したDNを用いた水質モニタリングについて

芝浦工業大学	正員	菅 和利
芝浦工業大学大学院	学員	佐藤允彦
芝浦工業大学大学院	学員	矢内祐一

1.はじめに

閉鎖水域での面的な水質モニタリングとして、デ ジタルカメラの画像解析手法について検討を行なっ てきた。閉鎖水域では船舶による定点観測、衛星画 像を用いる手法などが実施されているが、情報の収 集が簡易で、任意の時刻でのモニタリングを行なう ことができる航空写真の活用を実際の湾内で検討を 行なっている。係留気球にデジタルカメラを係留し、 その撮影されている海面範囲を船舶で移動しながら 採水し、デジタル画像の各画素のデジタルナンバー との関連を分析し、推定モデルを作成した。対象と する水質項目はクロロフィルである。クロロフィル の分析では可視域の吸光度を用いるので、同じ可視 域を対象とするデジタル画像のデジタルナンバー (DN)には水面のクロロフィル濃度が反映されて いる。

しかし、デジタルカメラの各画素に格納されるD Nに水面のクロロフィル濃度によって異なる反射ス ペクトルが反映されているかの検討が行なわれてい ない。本研究では、実験室内でクロロフィル濃度と CCDカメラの各波長のCCD値を測定し、理論的 に算定したDNとデジタル画像のDNとの関係につ いて検討を行なった。

2.実験方法

外部の光を遮断した暗室内にクロロフィルが含ま れた溶液を満たし、上方からデジタルカメラ、CC Dカメラで撮影を行なった。水槽は高さ、径共に約 80cmの大きさで、光源には太陽光に波長が最も近 いとされる D65 蛍光ランプを用いた。CCDカメラ にバリスペック液晶チューナブルフィルターをセッ トし、PC 操作によって可視域の 720nm から 400nm までの波長域を 5nm 刻みでCCD値を測定した。高 感度冷却 CCD カメラでは、CCD チップを冷却するこ とにより、微弱な光をも蓄積して高感度な情報を数

図1液晶チューナブルフィルターとCCDカメラ

値で表すことが出来る。したがって、光を蓄積する

時間によって C C D の値が異なる。最 初に白色板を水面 に浮かべ、各波長で 同じ C C D 値を得 るために必要な時 間を測定した。こ の結果が図 2 であ

図2 各波長での蓄積時間

図3 各濃度、各波長でのCCD値

る。この時間を基にし、クロロフィル溶液を満たし た水槽での各波長でのCCDを測定した。

各濃度、各波長でのCCD値の測定結果が図3で ある。図3から各濃度、各波長の反射率S())算 定する。各濃度でのデジタルナンバーを次式で算定 する。

$$DN_{i} = \alpha \int_{\lambda \min}^{\lambda \max} f_{i}(\lambda) S(\lambda) d\lambda$$
 (1)

キーワード:水質モニタリング、クロロフィル、デジタルカメラ、デジタルナンバー、CCDカメラ 芝浦工業大学工学部土木工学科水圏環境研究室 〒135-8548 東京都江東区豊洲 3-7-5 tel 03-5859-8362

うれん草をすりつぶして溶液を作成した。

3.結果および考察

図3のCCD値を反射率に変換し、式(1)でDN を計算した。DNは1から255の数値であるので、 反射率1(白色)でのDNが255になるように補正 係数 =2.5とした。各濃度でのCCDカメラから算 定したDNとデジタルカメラでのDNとの相関を示 したのが図5である。BについてはR,Gと多少関 数形を異にしているが、これは実験装置の影響と思 われる。CCD値から変換のDNは理論的なDNで あるが、図5に示すようにデジタルカメラでのDN と1:1の関係とはなっていない。R,Gについて は傾きは1であるが、理論DNが小さく、反射率の 計算について検討が必要である。しかし、一定の関 係が有るので、この理論DNを用いてクロロフィル -aの水質推定式を検討した。

図 6 はデジタルカメラでのDN(R)とクロロフ ィル-a 濃度の対数との相関を、図 7 は理論DNとク ロロフィル-a 濃度の対数との相関を示した図である。 図 6 はデータのばらつきがあるが、図 7 の log(Chl-a) と理論DNとは直線関係を示している。G,Bにつ いても同様であるので、log(Chl-a)と理論DNと の関係式を求めた。

光源等の影響を除去するため、三色係数を変数と した。

閉鎖水域でのク

図7理論DNとクロロフィル-a

ロロフィル-a 濃度の範囲での適応性は十分である。

図8 実測値と推定値の比較

log(Chl) = 6.27rf + +43.91gf + 23.42bf - 25.72 (3) デジタルカメラで撮影した DN を式(3)に代入して クロロフィル-a 濃度を推定すると、全くオーダーの 異なる推定値となる。

図 5 の理論 D N とデジタルカメラからの DN の違いを補正すると、ある程度の精度での推定が可能である。

しかし、CCD値からDNに変換する際に、測定 したCCD値を白板のCCD値で単純に割って反射 率としたが、水面、水、溶液中のクロロフィル、実 験装置の特性などが含まれており、反射率の算定に ついての検討が必要である。

図5 各濃度でのCCD値から変換のDNとデジタルカメラでのDN(R、G、B)