## 塩化物イオンを考慮した鉄筋腐食メカニズムに関する解析的研究

中央大学大学院 理工学研究科土木工学専攻 学生会員 〇川浦 実郎 文化シャッター株式会社 修士 正会員 久保 貴博 中央大学 理工学部土木工学教授 工博 正会員 大下 秀吉

## 1.はじめに

近年,鉄筋コンクリート構造物の早期劣化が問題となっ ており,鉄筋の腐食は構造機能上および耐久性の上で非常 に重大な問題である.本来,コンクリート中の鉄筋は不動 態皮膜に覆われているため腐食から保護されているが,塩 化物イオンなどの腐食因子の侵入により,不動態皮膜が破 壊されるとともに,鉄筋腐食を誘発させる.

従来,塩化物イオンと腐食の関係を評価した実験的研究 は数多くあるが,塩化物イオンの影響やその濃度に依存し た鉄筋腐食の詳細なメカニズムはほとんど確立されていな いといっても過言ではない.

本研究では、塩化物イオンを考慮した鉄筋腐食メカニズ ムの解明を目的として、腐食部における塩化鉄(I)の加水 分解から生成される塩酸による腐食部の pH 低下および鉄 錯体のアノード電極電位への影響、塩化物イオン濃度増加 に伴う孔食電位の低下に着目し、分析化学ならびに電気化 学的評価を行った.なお、現段階においては腐食因子とし て塩化物イオンのみを取り扱うこととするが、今後応力腐 食まで評価可能なモデルの構築を目的としているため、鉄 筋上における各種イオンの影響を考慮することは重要であ り、環境条件による鉄筋腐食を評価可能なモデルの構築は 必要不可欠である.

### 3. 鉄筋腐食モデル

不動態皮膜が破壊された鉄筋は活性態となり,鉄筋表面 上において式(1)のアノード反応,式(2),(3)のカソード反応 が起こる.

| $Fe \rightarrow Fe^{2+} + 2e^{-}$ | (1 | ) | ł |
|-----------------------------------|----|---|---|
| $Fe \rightarrow Fe + 2e$          | (1 | ) |   |

$$1/2O_2 + 2H_2O + 2e^- \to 2OH^-$$
 (2)

 $2H^+ + 2e^- \rightarrow H_2$ 

カソード反応は式(3)の水素発生型を仮定した.

# 2.1 塩化鉄(I)FeCl<sub>2(aq)</sub>の加水分解

$$Fe^{2+}_{(aq)} + 2Cl^{-}_{(aq)} + 1/4O_{2(S)} + H_2O_{(i)}$$

$$\leftrightarrow 1/2 Fe_2 O_{3(C)} + 2HCl_{(i)}$$

式(4)を塩化鉄(I)の加水分解反応とする.加水分解反応 により生成される塩酸は、腐食部のpH低下を促す.

### 2.2 平衡定数

式(4)の平衡定数値は各化学種の標準生成ギブスエネルギーの値より  $K^0$ =1.152×10<sup>-3</sup>となる.

本研究においては,塩化物イオン以外の活量係数は1と 仮定し,平衡定数Kは式(5)で表される.

$$K = K^0 \cdot \frac{1}{\gamma_{Cl}^2} \tag{5}$$

塩酸の濃度は式(6)で表される.

$$C = [HCl] = \sqrt{K \cdot \frac{[Fe^{2+}(aq)] \cdot [Cl^{-}(aq)] \cdot [O_2]^{1/4} \cdot [H_2O]}{[Fe_2O_3]^{1/2}}}$$
(6)

本研究では,鉄イオンの濃度は可溶性の塩化鉄(I)が完 全解離すると仮定し,塩化物イオン濃度に対応する濃度を 与え,酸素濃度は大気分圧値を与えた.

#### 2.3 腐食部における pH

コンクリート中で代表的な化学種である以下の式(7)~(10)の化学反応により pH の変化が評価可能となる.

| $NaCl \leftrightarrow Na^+ + Cl^-$ | (7) |
|------------------------------------|-----|
| $ROH \leftrightarrow R^+ + OH^-$   | (8) |

| $KOH \leftrightarrow K + OH$       | (0) |
|------------------------------------|-----|
| $NaOH \leftrightarrow Na^+ + OH^-$ | (9) |

$$H_{2}O \leftrightarrow H^{+} + OH^{-} \tag{10}$$

物質収支,電荷均衡式

$$C_1 = [Na^+] = [Cl^-] \tag{11}$$

 $[Na^{+}] + [R^{+}] + [H^{+}] = [OH^{-}]$ (12)

式(11), (12)より, NaCl 濃度による pH(以下, pH <sub>アルカリ</sub>)上 昇は式(13)で表される.

 $pH_{\mathcal{F},\mathcal{N},\mathcal{D},\mathcal{V}} = 14 + \log(C_1 + [R^+] + \sqrt{(C_1 + [R^+])^2 + 4Kw/2)}$  (13) [R<sup>+</sup>]は NaCl 侵入前のコンクリート中のアルカリ濃度であ る.本研究では *NaCl* 侵入前のコンクリートの pH を 12 と し、水酸化アルカリ濃度を 0.01M として扱う.

式(13)から, NaCl 濃度が増加するに従い, pH <sub>アルカリ</sub>は上昇 することがわかる.しかしながら,塩分量が多くなると腐 食は促進されるため,見かけ上 pH が低下する現象すなわち 防食とは逆の現象が起こると考えられる.

ここで, 腐食条件式(14)を考える.



(3)

(4)

キーワード:塩化物イオン,鉄筋腐食,電極電位,鉄錯体,Tafel式 住所:東京都文京区春日1-13-27,電話:03-3817-1892,FAX:03-3817-1803



(14)

図 - 1から塩化物イオン濃度が 0.015M 以上において腐食が 発生することがわかる.本研究では、塩化物イオン濃度 0.015M における見かけの pH(以下, pH<sub>+tt</sub>)を通常環境下に おいて腐食する pH7 に対応させ、式(15)で表した.図-2 は 式(15)を用いた pH<sub>+tt</sub>の遷移を示したものである.

$$pH_{\pm\pm} = 7 - \Delta pH_{\gamma\nu_{\pi}\nu} \tag{15}$$

以下の式(16)~(18)の化学反応より,腐食部のpH(以下, pH<sub>腐食</sub>)を評価する.なお,化学種 HA は pH<sub>中性</sub>を考慮する ための仮想の化学種である.

| $HCl \leftrightarrow H^+ + Cl^-$ | (16) |
|----------------------------------|------|
| $HA \leftrightarrow H^+ + A^-$   | (17) |

$$H_{2}O \leftrightarrow H^{+} + OH^{-} \tag{18}$$

物質収支,電荷均衡式

 $[Cl^{-}]/[OH^{-}] \ge 0.6$ 

$$C_2 = [A^-] = 10^{-pH_{\oplus\pm}} \tag{19}$$

$$C_{3} = [HCl] = [Cl^{-}]$$
(20)

$$[H^+] = [A^-] + [Cl^-] + [OH^-]$$
(21)

式(19)~(21)より pH <sub>腐食</sub>は式(22)で表される.

 $pH_{\text{KR}} = -\log(C_2 + C_3 + \sqrt{(C_2 + C_3)^2 + 4Kw/2})$  (22) 図-3に pH <sub>KR</sub>の遷移を示す. 同図から, 図-2の pH <sub>中性</sub>に 比べ, pH <sub>KR</sub>は低下していることがわかる. これは塩酸によ る影響であり,より腐食が促進する活性状態になっている と考えられる

## 3. 腐食電流密度の算出式

3.1 Tafel 式

アノード反応,カソード反応による電流密度は Tafel の関係より,式(23),(24)で表される.

$$i_a = i_a^0 \cdot \exp[\alpha_a (E - E_a)]$$
<sup>(23)</sup>

 $i_c = i_c^0 \cdot \exp[-\alpha_c(E - E_c)]$  (24) 腐食電流密度  $i_{corr}$ は式(23), (24)の交点で表される.

## 3.2 ネルンストの式

式(1), (3)のアノード,カソード反応による電極電位は ネルンストの式より式(25), (26)で表され

$$E_{Fe} = E_{Fe}^{0} + 0.0295 \log a_{Fe^{2+}}$$
(25)

$$E_{H_2} = E_{H_2}^0 - 0.059 \, pH \tag{26}$$

式(25)は塩化物イオンの影響が考慮されていないもので ある.本研究では式(25)に塩化物イオンの影響として鉄錯体 形成および孔食電位低下の影響を導入する必要がある.

鉄錯体の影響を考慮したアノード電位は式(27)で表される.  

$$E_{Fe} = E_{Fe}^{0} + 0.0295 \log \beta_{0} + 0.0295 \log[Fe^{2+}]$$
 (27)  
 $\beta_{0} = 1/1 + k_{1} \cdot [Cl^{-}] + k_{1} \cdot k_{2} \cdot [Cl^{-}]^{2}$ 

表-1 各濃度における孔食電位とアノード電流密度

| 塩化物イオン濃度[CaCl2](mol/l) | 孔食電位(V) | アノード電流密度(A/m2) |
|------------------------|---------|----------------|
| 0.01                   | 0.785   | 0.238          |
| 0.1                    | -0.289  | 0.289          |
| 0.2                    | -0.612  | 0.289          |

ら、塩化物イオン濃度が高いほど孔食電位が低下している ことがわかる.塩化物イオンのようなハロゲン・イオン の濃度の対数と孔食電位の間には比例関係があるとされて いる<sup>20</sup>.同図の各濃度における孔食電位の値を表-1に示す. 表中の孔食電位値を用いることで、図-5に示すような、各 孔食電位を通る対数近似曲線を求めた.この近似曲線より、 孔食電位低下の度合いは、塩化物イオン濃度を用いること で-0.4664ln[C1<sup>-</sup>]となる.

図-5 で示す近似曲線を式(25)に導入することによって, 孔食電位の低下を考慮に入れたアノード電位は式(28)で表 される.鉄イオン濃度に対しても*pH*の影響を考慮するため, *Fe(OH)*2の溶解度積*K*<sub>SP(Fe(OH)2</sub>:4.8×10<sup>-17</sup>を用い考慮した.

 $E_{Fe} = E_{Fe}^{0} + 0.0295 \log \beta_{0} + 0.0295 \log [Fe^{2+}]$ 

$$-0.4664 \ln[Cl^{-}] + Y$$
 (28)

 $\log[Fe^{2^+}] = \log K_{SP(Fe(OH)_2)} - 2\log[OH^-] = 11.67 - 2pH$ 

式(28)中の Fは,塩化物イオン濃度 0.01M において,式(23) のアノード Tafel 曲線が表-1 の濃度 0.01M における孔食電 位を通るものとして決定した値であり, Y=-1.198 である. 式(26),(28)より,塩化物イオン濃度が増加するに従い,カ ソード電位は上昇し,アノード電位は低下するため,腐食 電流密度は増加する.

## 4. 本モデルによる腐食電流密度算出結果

図-6 は任意の塩化物イオン濃度における腐食電流密度 の実験値<sup>33</sup>と解析値を比較したものである.同図からわかる ように,鉄錯体のみを考慮した解析値は実験値と比較して 塩化物イオン濃度が増加しても電流密度の顕著な増加はみ られない.これに対して,錯体の影響と孔食電位の低下を 考慮したものは,解析値のほうが若干実験値の電流密度を 上回るものの,増加傾向として指数型を示しており,傾向 的には比較的一致しているものと思われる.このことから, 鉄筋腐食に対する塩化物イオンの影響を考えるにあたって, 鉄錯体の影響のみではなく孔食電位低下の影響も考慮する ことが必要であるといえる.

## 5. まとめ

(1)分析化学ならびに電気化学的手法により鉄筋腐食に対す る塩化物イオンの影響として、塩化鉄(I)の加水分解お よび鉄錯体,孔食電位の影響を考慮した鉄筋腐食モデル を構築した.

(2)実験値との比較より、腐食に対する塩化物イオンの影響 を考える際には、鉄錯体の影響のみではなく、孔食電位 低下の影響も考える必要性が明らかとなった.

参考文献

- 1) H Ohmoto K $\!-\!1$  Hyashi Ykajisa Geochim Coso Acts
- 2) 森岡進, 沢田可信, 杉本克久:金属学会会報 vol.7, pp. 731-741, 1968
- 3) 徳光卓,石橋孝一,丸山久一,山口光俊,山岸隆典:土木学会第58 回年次学術講演会講演概要集第5部 vol.58, pp.91-92, 2003