㈱四国総合研究所	正会員	○横田	優
	非会員	廣瀬	誠
	非会員	前田	龍己
	非会員	松田	耕作

1.はじめに

近年、道路橋脚等の一般コンクリート構造物にお いてアルカリ骨材反応(ASR)を原因とするコン クリート内の鉄筋破断が問題となっているが、現場 で簡易にこれを診断できる装置が無いのが現状であ る. そこで, 鉄筋コンクリート構造物における鉄筋 破断診断を目的に,着磁後磁束密度測定による新し い非破壊診断手法(以後、磁気法と言う)を開発し た.本手法を適用し、模擬供試体によりコンクリー トのかぶり150mm までの鉄筋直線部および曲げ加工 部の破断の有無を診断できることを確認した.また, 実構造物の鉄筋破断診断を行ったので、その概要を 報告する.

手法の原理

鉄筋が強磁性体であることを利用し、図1のよう に、コンクリート中の鉄筋を永久磁石を内蔵した磁 石ユニットでコンクリート表面から着磁した後、コ ンクリート面に垂直な方向成分の磁束密度を高感度 磁気センサを内蔵したセンサユニットで測定する. 測定した磁束密度分布波形から,鉄筋破断箇所付近 に発生する漏洩磁束の有無を判定することで、鉄筋 破断の有無を診断するものである. コンクリート隅 角部における鉄筋曲げ加工部の診断の場合には、コ ンクリート隅角部を境に2面(例えば、上面側と側 面側)に分けて各面について着磁,測定を行う.こ の診断装置(試作機)の外観を図2に示す.

3.鉄筋供試体の測定

診断対象の D16 鉄筋曲げ加工部を D32 鉄筋直線部 のコンクリート表面側に配置した供試体の概略を図 3 に示す.供試体をかぶり100mm および 150mm にお いて実際に着磁、測定した磁束密度分布を図4に、 診断対象の D16 の鉄筋(曲げ加工部を含む)に、鉄 筋長手方向に沿った方向の磁化を一定量与えた場合 の有限要素法による磁場解析の結果得られた同位置 での磁束密度分布を図5にそれぞれ示す.図4,図5 から、実測結果と解析結果が、ほぼ一致し、かつ診 断対象の鉄筋曲げ加工部が, 健全な場合と破断があ る場合とでは、磁束密度分布が明らかに異なること がわかる.鉄筋が曲げ加工部で破断している場合に は、健全時の特性に加えて、鉄筋曲げ加工部の+側 約0.1mの位置でピークを持つ分布が得られた.

4. 実構造物への適用

北陸地方における一級河川に架かる鉄筋破断の可 能性のある橋脚(1972年完成)の梁部について、本 手法を適用した鉄筋破断非破壊診断を実施した(図 6, 表 1). はつり調査(図 7) と照合した結果, 鉄筋 破断・非破断が診断通りであることが確認できた.

5.まとめ

磁気法による鉄筋破断非破壊診断手法を開発した. 模擬供試体および実際の道路橋橋脚梁部において, 本手法により鉄筋破断の有無を非破壊で診断できる ことを確認できた.

表1 橋脚梁中央部上端のコンクリート隅角部(起点側中央から下流側)の診断結果

		鉄筋番号	1	2	3	4	5	6	\bigcirc	8	9		10	
はつり前鉄筋破断 非破壊診断結果 [※]		0	0	0	0	0	0	×	Δ	0		Δ	※表内の記号	
検証 結 果	かぶい	ノ上面側	210	220	215	260	220	260	210	255	220	255	220	〇:非破断
	(mm)	側面側	95	110	100	90	80	90	80	80	90	80	65	×·破 新
	鉄	5種別	スターラッフ゜	主鉄筋	スターラッフ゜	主鉄筋	スターラッフ゜	主鉄筋	スターラッフ゜	主鉄筋	スターラッフ゜	主鉄筋	スターラッフ゜	
	鉄筋	i破断 [※]	〇 亀裂: ^{円周の1/2}	_	〇 亀裂: ^{円周の1/2}	_	0	_	×	_	0	_	×	△:

キーワード 非破壊,診断装置,鉄筋破断,磁束密度,アルカリ骨材反応

連絡先

〒761-0192 香川県高松市屋島西町 2109 番地 8 ㈱四国総合研究所 電力利用研究部 TEL 087-844-9212

5 - 434

図 6 橋脚梁中央部上端のコンクリート隅角部に おける側面側測定結果(スターラップ)曲げ加工部)

図7 橋脚梁中央部上端のコンクリート隅角部の はつり後の写真:鉄筋曲げ加工部(⑤~⑩)