鉄筋コンクリートはりのウエブ圧縮破壊に関する実験的研究

東京工業大学	学生員	○小林	央治
東京工業大学	正会員	三木	朋広
東京工業大学	フェロー会員	二羽酒	拿一郎

1. はじめに

近年,高性能,かつ高強度を有するコンクリート, 鋼材が実用化され、橋梁の軽量化、長大化が可能とな っている. 高強度コンクリートの性質を十分に活かし た鉄筋コンクリート(以下 RC)部材は、ウエブ厚を薄く し、高強度鋼材を密に配筋することで実現できる.一 般的に、ウエブ圧縮破壊の終局耐力は非常に大きいた め, ウエブ厚は他の要因, 例えば斜め引張破壊耐力に より決定されてきた.しかし,先に示した RC 部材で は、ウエブ圧縮破壊によって破壊に至ることが危惧さ れる. RC はりのウエブ圧縮破壊に関する研究は少なく, その挙動については十分に把握されていない. そこで, ウエブ厚が薄く、十分せん断補強された RC はりを対 象としたせん断破壊実験を行い、ウエブ圧縮破壊耐力 を評価し、その挙動を実験的に検討した.

2. 実験概要

ウエブ圧縮破壊を斜め引張破壊より先行させるため, ウエブ厚を薄くし、さらにスターラップとして異形 PC 鋼棒を密に配筋した RC はりを対象とした.供試体は 表1に示した6通りである。コンクリートの圧縮強度 を普通強度(=30 MPa),高強度(=65 MPa)の2種類とし,

化 2 小川10日									
コンク W/ リート (%			肖	混和剤量(%)					
	W/C (%)	水	セメント	石灰石 微粉末	細骨材	粗骨材	SP ^{**1}	V ^{**2}	
普通強度	60.0	175	292	249	718	857	1.50	0.20	
高強度	25.0	165	660	0	753	790	1.48	0.10	

^{※1}SP : 高性能減水剤((セメント+石灰石微粉末) に対する重量百分率),

a = 660

※2V: 増粘剤(水に対する重量百分率)

240

韦? 示方配会

せん断補強筋比を 1.0%(せん断補強筋間隔 s=160 mm), 2.0%(同 80 mm), 2.9%(同 55 mm)の3種類とした.す べての供試体を同一の形状とし、I型断面 RC 部材とし た.供試体概要を図1に示す.用いたコンクリートは, 高流動コンクリートであり,配合および材料特性を表 2,3に示す.また,鋼材の概要を表4に示す.

実験は、a/d=3.0(せん断スパン 660 mm)とする中央1 点静的単調載荷により行った.計測項目は荷重,スパ ン中央,および支点上の鉛直変位,曲げひび割れ幅, 圧縮側コンクリートのひずみ, 引張軸方向鉄筋のひずみ, スターラップのひずみであり、 逐次写真による観測も行った.

3. 実験結果および考察

表5に実験結果を示す.なおウエブ圧縮破壊耐力は, コンクリート標準示方書¹⁾, Placasら²⁾の研究によれば,

表 1 供試体一覧							
供試体	コンクリート	せん断補強筋比r _w (%)					
NR1	普诵強度	1.0 (s = 160 mm)					
NR2		2.0 (s = 80 mm)					
NR3	(30 MPa)	2.9 ($s = 55 \text{ mm}$)					
HR1	高強度	1.0 (s = 160 mm)					
HR2		2.0 (s = 80 mm)					
HR3	(65 MPa)	2.9 (s = 55 mm)					

表3 コンクリートの材料特性

供試体	圧縮強度 (MPa)	引張強度 (MPa)	ヤング係数 (GPa)
NR1	33.4	2.50	25.8
NR2	35.8	2.85	29.4
NR3	35.0	2.55	28.4
HR1	65.2	3.76	31.1
HR2	73.8	4.27	31.6
HR3	61.5	3.57	28.8

表4 使用鋼材概要

鉄筋種類	鉄筋径	降伏強度 (MPa)
軸方向引張鉄筋	D22	930 以上
軸方向圧縮鉄筋	D16	295 以上
スターラップ	U9.0	1275 以上

¢

キーワード: せん断破壊, ウェブ圧縮破壊, 高強度鋼材 連絡先:〒152-8552 東京都目黒区大岡山 2-12-1 M1-17 TEL 03-5734-2584

1

単位:mm

250~

次式により求まる.

$$V_{eq.l} = 1.25f'_{c}{}^{1/2}b_{w}d \tag{1}$$

 $V_{eq.2}=0.15(6.63+132r_w)f'_c^{1/2}b_wd$ (2)

ただし、V_{eq.1}:示方書式による算定値(N)、V_{eq.2}: Placas らの提案式による算定値(N), f'c: コンクリートの圧縮 強度(MPa), b_w: ウエブ幅(mm), d: 有効高さ(mm), r_w: せん断補強筋比.

既往の研究成果および算定式と実験結果の関係を図 2 に示し,荷重−変位関係を図3,4 に示す.

3.1 破壊性状

各供試体とも、せん断スパン内ウエブ部でのせん断 ひび割れ間においてコンクリートが圧壊し、終局に至 った.ただし、高強度コンクリートを使用し、せん断 補強筋比が 1.0 % である HR1 供試体においては, せん断 ひび割れが開口し、斜め引張によって終局に至った. 以 降, ウエブ圧縮破壊した5体の供試体について検討する.

3.2 終局せん断耐力の検討

表5に示すように、示方書式による算定値は、普通 強度コンクリートを用いた場合では、実験値と算定値 の比(Vexp/Vea.1)が 0.92~0.95 となった. 一方, 高強度コ ンクリートを用いた場合では、1.21~1.25 となった. Placasらが提案している算定式でも,実験値と算定値の 比(Vexp/Vea2)が 0.72~1.04 となり、十分な予測精度を有 しているとは言えない. そこで, 各因子による影響を 詳細に検討することとする.

(1) せん断補強筋比r₄の影響

3.0

V_{exp}/((f' c)^{1/2}bwd) 0 0

0.0

図 2を見ると、せん断補強筋比rを 10~ 2.9%の範囲で 通強度コンク トのいずれを う耐力の向上 また, 図3,4 ても、ほとん

(2) コンクリート強度の影響

図3,4からわかるように、高強度コンクリートを用 いたRCはりでは、普通強度コンクリートを用いた場合 に比べ、ウエブ圧縮破壊後の挙動が脆性的であること がわかる.これは、圧縮力下のコンクリートのポスト ピーク挙動が、高強度になるにつれて脆性的となるた めと考えられる.なお、示方書式では、高強度コンク リートを用いた場合,普通強度に比べて(V_u/V_{eal})の値が 増加することから,高強度の場合の耐力低減を大きく見 積もっていると推測される.

4. 結論

- (1) 通常のRCはりにおいて、一般に、ウエブ圧縮破壊は 起こらない破壊形態とされる.しかし、本実験のよう なウエブ厚が薄く、十分せん断補強された RC はりで は、起こり得る破壊形態であることがわかった.
- (2) ウエブ圧縮破壊は、コンクリートの圧縮挙動の影 響を強く受ける. コンクリートの高強度化による 終局耐力の低減については,示方書に規定されて いる程度より小さいものと思われる.
- (3) 既往の算定式は,破壊を十分予測できているとは言 えない. 今回の実験結果はウエブ圧縮破壊耐力に関 する経済的な設計には、今後、精度の良い新たな算 定式の構築が必要であることを示唆している.

参考文献:1)土木学会:コンクリート標準示方書,土木学会, 2002, 2) A. Placas, P. E. Regan : Shear Failure of Reinforced Concrete Beams, ACI Journal, Vol.68, No.10, pp.763-774, 1971

るこ、 せん阿倫加加加 r_w を 1.0~			マ	をう 実験結	果		
で変化させた今回の実験では,普	供	終 局荷重		ウエブ圧縮碩	波壞終局荷重		
リートおよび高強度コンクリー	試体	$2V_{exp}$ (kN)	破壊モード	示方書 2V _{eq.1} (kN)	Placas $2V_{eq.2}$ (kN)	$V_{exp}/V_{eq.1}$	$V_{exp}/V_{eq.2}$
用いた場合でも,r _w の増加に伴	NR1	117.2	ウエブ圧縮	127.1	127.0	0.92	0.92
けほとんど認められなかった。	NR2	123.3	ウエブ圧縮	131.6	153.3	0.94	0.80
	NR3	123.3	ウエブ圧縮	130.2	171.2	0.95	0.72
から、ホストヒーク学動につい	HR1	121.5	斜め引張				
ど影響がないことがわかった.	HR2	229.1	ウエブ圧縮	189.0	220.0	1.21	1.04
	HR3	215.6	ウエブ圧縮	172.5	226.9	1.25	0.95
e 。 c · · · · · · · · · · · · · · · · · · ·	·通強度) ·強度) 式			NR1 NR2 NR3			
□.0 2.0 3.0 4.0 □断補強筋比「w (%) 図2 実験結果の比較		。 図3荷	⁴ 変位 (п 重-変位曲線	⁸ ™) (普通強度)	。 図4荷重-3	^₄ (mm 変位曲線(。 (高強度)

2