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1. Introduction 
Speed is an essential part in all characters of transportation. Therefore, all kinds of transportation, including the 
railway, regard speeding up and shortening travel time as a stepping stone for improving transportation quality and 
enhancing competition in the transportation market. On October 1, 1964, the commercial operation of the 
Shinkansen Train in Japan marked the beginning of a new era for high-speed railways. 

Shinkansen RC bridges in Japan, constructed over 40 years ago, undertake increasing service loads and severe 
earthquake loads. Because of the huge amount of kinetic energy carried at high speeds, a train might interact with 
the bridge and even resonate with it under certain conditions, which will even affect the safety of the passengers. 
Equally important is the riding comfort of train passengers, which relates closely to the maneuverability of the train 
during its passage over the bridge at high speed. 

In analyzing the Train-Bridge Interaction (TBI) systems, two sets of second order equations of motion are written; 
one is for the trains and the other for the bridge. The interaction forces at the contact points make the two 
subsystems coupled. This paper formulates TBI by modeling moving trains and a bridge as two systems interacting 
with each other through the contact forces. By solving the contact forces from the train equations, one can treat 
them as external forces on the bridge, which can then be solved using conventional finite element procedures. 
Because of the versatility of such a concept, the train-bridge model can be used in the simulation of various three-
dimensional train-bridge systems. 

 
2. Analysis method to decouple the Train-Bridge Interaction problem 
The TBI problem is a complicated one in that as the contact points move in time, the system matrices are, in 
general, time-dependent and must be updated and factorized at each time step in an incremental analysis. Since 
we want to regard the whole system as two separate parts, a decoupling process is needed in the analysis. Here 
an uncoupling method by means of the Newmark scheme (finite differences) is used. 
1) Train equations 
The values of the matrices of the train can be obtained with the Euler-Lagrange equations, and the train model is 
calculated using Matlab software, modeled as in Figure 1. Using the displacement vector of the 15DOFs of the 
upper part (car body and bogies), { }U , and displacement vector of the 12DOFs of the wheels set, { }W , Equation of 
motion of the train is expressed as follows: 
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where { }weF  is the vector of external forces and { }R  is the unknown vector of the dynamic reactions of the bridge 
at the positions of the wheels. This can also be written as (2). 
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2) Bridge equations 
The bridge is modeled and analyzed with the ABAQUS finite element software as in Figure 2. Because of the 
versatility of the general FEM software, the construction details of any type of the structure can be considered and 
simulated. Using the vector of the nodal displacements of the bridge, { }Y , its equation is 
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where { }beF  is the vector of the external forces, and ∑= ii RNR }{~  is the vector of the nodal forces corresponding 
to {R}; {N i} is the interpolation vector for vertical displacements at the position of wheel i. Assuming the wheel 
does not jump on the rail, the contact condition {W}={Yc}+{rc} must hold; {Yc} is the vector of the bridge deflections 
and {rc} is that of the rail irregularities at the eight contact points. 
3) Decoupling method 
The coupled equations are uncoupled by means of the Newmark scheme, of which the order of accuracy is the 
same as the Newmark finite difference method [1]. Suppose that the displacements, velocities, accelerations of the 
train and the bridge are known at time t.  Defining a time step Δt, the equations of the train at time t+Δt are: 
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The Newmark scheme of parameters (β,γ), represented as the following equations, 
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expresses { } { } { } tttttt UUU Δ+Δ+Δ+ ,, &&&  as functions of { } { } { } { } { } { } ttttttttt WWWUUU Δ+Δ+Δ+ ,,,,, &&&&&& .This relationship is in turn 
substituted in the second equation. Using the contact condition {W}={Yc}+{rc}, the contact force vector is written as 
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At time t+Δt,  the contact force applied to the bridge is given as 
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Hence an uncoupled bridge equation is deduced as the following equation.  
[ ]{ } [ ]{ } [ ]{ } { } { }**** tttbettbttbttb FFYKKYCCYMM −=+++++ Δ+Δ+Δ+Δ+

&&&  (8) 
{ } { } { } tttttt YYY Δ+Δ+Δ+

&&& ,,  are determined from this equation. The contact condition yields { } { } { } tttttt WWW Δ+Δ+Δ+
&&& ,, , which is 

then used to compute { } { } { } tttttt UUU Δ+Δ+Δ+
&&& ,, . The force{ }*ttF Δ+ for the next step is computed.  Because the additional 

matrices **,*, CKM  are known from the history of the wheel positions, the equations for the bridge can be solved 
for the next step.  
 
3. Analytical procedure and analysis result compared with measurement result 
According to the analytical method described, the analytical procedure is illustrated as Figure 3. As compared with 
the field measurement[2], the analysis result agrees well with the measurement result. Figure 4 shows the time-
history of the vertical acceleration of a point located on a column of the viaduct. This comparison demonstrates that 
the analytical method explained in this paper can well simulate the behavior of structures under TBI.  
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Figure 3. Analytical procedure Figure 4. Acceleration results 

4. Conclusion and future work 
In this paper an effective analysis method of a TBI system is proposed. Because TBI has been taken into account, 
the model can be used to study not only the bridge vibration response, but also the train response; train response 
analysis can be utilized as a measure of passengers’ riding comfort. The versatility of the method is expected to 
provide an analysis tool for a variety of applications, such as high-speed train safety analysis under earthquake 
load or wind load.  
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Figure 1. The train model of 27DOFs in Matlab Figure 2. The bridge model in ABAQUS 

土木学会第62回年次学術講演会(平成19年9月)

-628-

5-314


