短繊維補強モルタルパネルの接合強度に関する実験

大阪市立大学大学院	学生員	○齋藤	尚	谷口	勝基
東亜建設工業株式会社		尾上	和彦		
大阪市立大学大学院	正会員	大内	_	角掛	久雄

1. はじめに

コンクリートやモルタルといったセメント系材料は,引張強度が圧縮強度 と比較して低いことから,引張応力作用下においてひび割れ発生後,脆性的 な性質を示す.そのため近年,セメント系材料に短繊維を混入させ,繊維の 架橋効果によりひび割れ幅の拡大を抑制し,引張靱性を向上させる繊維補強 セメント系材料 (FRCC)¹⁾の研究が勢力的になされ,技術整備も進められ ている.この材料を用いることにより,新設構造物への適用は勿論,補修・ 補強材料の1つとしても適用が期待できる.居ながらの補修や補強を考える

時,図-1に示すような小割したパネルの組立てが考え られるが,その際,繊維補強モルタルパネル間の接合が 適用上の課題として挙げられる.そこで,本研究では, 繊維補強モルタルパネル間の接合強度に着目し,一軸引 張試験を行った.

図-1 補修·補強適用例

表一1 配合表

	水結合剤比	細骨材率	繊維混入率	単位量(kg/m ³)		3)	
配合	W/(C+FA)	S/C	$V_{\rm f}$)	
	%	%	vol.%	W	С	FA	VA
F-P20	45	50	2.0	396	704	176	0
V-P15 45	50	1.5	405	900	0	1.4	

2.1 配合

繊維補強モルタルの配合を表-1に示すように、水結合剤比はともに 45% とし、フライアッシュ(FA)を使用したもの、増粘剤(VA)を使用したも のの計2種類とした.なお、配合については、事前に数種類の配合から曲げ 試験を行い、最も靱性が得られたものとしている.また、使用した繊維は PVA 繊維であり、長さ 12mm、径 40µm、密度 1.30g/cm³、ヤング率 40GPa、 破断伸度 6%である.

2.2 供試体概要

供試体形状を図-2に示す.供試体は長さ 400mm,端部の断面 100× 100mm,くびれ部の断面 60×100mm のダンベル型であり,供試体中央部に 接合面を設けたものである.接合面の接着にはエポキシ樹脂系接着剤(シー カデュア 311)を使用した.パラメータは表-2に示すように配合 2 種類, 接合角度 θ (0°,45°,60°,90°) 4 種類の計 8 ケースである.なお,接合角度 0° とは接合面を設けていない供試体のことを示す.

2.3 載荷方法および計測項目

載荷には容量 1000kN の万能試験機を使用して行った.その時の載荷速度 は 0.5mm/min とした.また,隅角部付近に変位計を 4 点,供試体各面にひ ずみゲージを 4 点設置し,試験区間内のひずみを測定した.なお,試験区間 は供試体中央部の 100mm とした.ただし,ひずみゲージはひび割れ発生ま での初期剛性を確認するために取り付けている.

キーワード 短繊維補強モルタル,補修・補強,接合,一軸引張試験

連絡先 〒558-8585 大阪市住吉区杉本 3-3-138 大阪市立大学大学院工学研究科都市系専攻 TEL / FAX: 06-6605-2723

表一2 供試休一覧

		rt: 元
供試体名	配合	接合角度 θ (度)
F-A00	F-P20	0(接合なし)
F-A45		45
F-A60		60
F-A90		90
V-A00	V-P15	0(接合なし)
V-A45		45
V-A60		60
V-A90		90

3. 実験結果

3.1 応力ひずみ関係と破壊挙動

図-3に配合別の応力-ひずみ関係を示す.ここに、応力は荷重 を試験区間内の断面積で割ったもの,ひずみは図-2に示す変位 計 4 つの平均値として算定している.図中の△印,○印および× 印はそれぞれ初期ひび割れ点,最大応力点および破断点を示す. V-A00 は試験区間内・外の両方にひび割れが発生し、最終的に試 験区間外のひび割れ幅が拡大してしまったため、最大応力後のひ ずみが測定できず、応力が低下した.ただ、図-3には接合面を 設けた供試体の強度の比較を行うために載せている.F-A45 および V-A45 は図中に破断点が示されていないが、それぞれ 55000u およ び 33000µ 付近で接合面に沿って破断した. F-A60 および F-A90 は 最大応力後, 脆性的な破断したため, 図中では最大応力後を点線 で示している.配合別に比較すると,F-P20の配合については,接 合面の存在により F-A00 より強度および靭性とも低下している. V-P15の配合では、V-A00が試験区間外で破壊してしまったため、 接合面を設けた供試体との靭性の比較はできない. 接合角度別に 比較すると、接合角度 60°および 90°は最大応力後の強度低下が大 きく, 脆性的な挙動を示す. 接合角度 45°は最大応力後の応力低下 が小さく、大きなひずみで破断した. 接合角度 45°については 2 つ の配合とも同様の結果が得られている. 図-4 (a) に載荷中にお ける F-A45 のひび割れを,(b) に V-A90 の破断後の断面の写真を 示す. 図の(a) では途中まで接合面に沿ってひび割れが進展する が,その後接合面から離れる傾向がある.(b)の供試体の場合は, 最大応力を示した後, 接合面に沿ってモルタルの表層が剥離した.

3.2 接合強度

図-5は得られた最大荷重から接合面での破壊強度を評価する ものである。接合面に作用する最大垂直応力と最大せん断応力を モールの応力円を仮定して算出したもので,垂直応力は圧縮を正 としている。図中の線は,直線近似した破壊曲線となる。なお, 配合により若干異なるが大差がないため、2種類の配合を合わせた ものとした。破壊強度は,モール・クーロンの破壊基準で評価で きる可能性がある。

4. まとめ

- (1) 接合角度が小さくなるにつれて,最大応力後の応力低下が少なく,破断ひずみも大きくなる.
- (2) 接合面の破断強度は、モール・クーロンの破壊基準で評価でき る可能性がある.

なお,供試体数が少なく,他の接合角度のデータがないため, 今後さらに実験を加えていく必要がある.

参考文献 1)(社)日本コンクリート工学協会:高靱性セメント複合材料の性能評価と構造利用研究委員会報告書(Ⅱ),2004.5

