高密度配筋RC柱部材の破壊性状

JR東日本	正会員	○霞	誠司
JR東日本	正会員	岩田	日道敏

<u>1. はじめに</u>

従来,線間やホーム上など狭隘空間における柱は、コストは高いが施工性を考慮して極厚CFT鋼管柱で設計・ 施工されている.本実験では、極厚CFT鋼管柱よりも安価である従来のRC柱を高密度配筋RC柱(軸方向鉄 筋比 6%以上)とすることで柱を細くすることにより、線間など狭隘空間での柱施工におけるコストダウンを目的 とする.著者らは既往の研究で高密度配筋RC柱3体の正負水平交番載荷試験の実験結果を報告している¹⁾. 本稿では、引き続き実施した柱試験体2体を追加して、計5体の試験体の破壊性状について報告する.

2. 実験概要

実験では高密度配筋R C柱試験体の正負水平交番 載荷試験を実施した.ここで,試験体の軸方向鉄筋 はD16 (SD295A),帯鉄筋はφ7.1 (SBPDN1275/1420) のスパイラル状高強度帯鉄筋を使用した.図-1 に柱 試験体の概略図を示す.なお,降伏変位δ_yは加力方 向に対して 45 度範囲の最外縁軸方向鉄筋ひずみが 鉄筋の材料試験から求めた降伏ひずみに達したとき とした.**表-1** に各試験体の主な諸元を示す.また, 図-2 に各試験体の柱断面図を示す.

図-1 柱試験体概略図

試馬 N	_{倹体}	柱径 D (mm)	軸方向 鉄 筋	軸方向 鉄筋比 ρ _p (%)	せん断 ^{スハ°ン} a (mm)	せん断 スパン比 a / d	高強度 帯鉄筋	帯鉄筋 ^{ピッチ} (mm)	耐力比 V _{yd} /V _{mu}	記事
柱	1	350	D16	19.8	1050	3.31	φ 7.1	33.1	1.50	No.②の耐力比 1.5
	2	350	D16	19.8	1050	3.31	φ 7.1	24.1	1.98	ベース試験体
	3	350	D16	23.1	1050	3.31	φ 7.1	21.1	2.00	No.②の ρ _p =23.1%
	4	350	D16	19.8	600	1.89	φ 7.1	13.1	1.99	No.②の a / d =1.89
	5	350	D16	19.8	1500	4.73	φ 7.1	36.1	1.98	No.②の a / d =4.73

表-1 柱試験体諸元

<u>3. 実験結果</u>

(1) 荷重-変位曲線

図-3~図-7に各試験体の荷重-変位曲線を示す. No. ①~No. ④の曲線履 歴は,最大荷重付近までは釣鐘形状の軌跡となるが,最大荷重以降は変位 増大に伴い,水平荷重を除荷しながら加力方向を切り替える間で曲線の軌 跡が横にスリップする傾向を示す.これは,最大荷重までに柱基部におい て軸方向鉄筋の付着切れが発生し,それ以降は柱高さ全体にわたって付着 切れが進行したため,図-2 のような束ねた軸方向鉄筋が相互に滑るよう にずれながらせん断変形したためと考えられる(写真-1,写真-2).一方,

キーワード 狭隘空間,高密度配筋,正負水平交番載荷,軸方向鉄筋比

連 絡 先 〒151-8512 東京都渋谷区代々木二丁目2番6号JR新宿ビル TEL03-3379-4353

No. ⑤の曲線履歴は, 釣鐘形状のまま載荷が増加 し,7δの載荷中(部材角 1/10 程度)に帯鉄筋 が破断して試験を終了した(**写真-3**). また, 変形モードはせん断変形ではなく曲げ変形が卓 越したものとなった.

(2) 高密度配筋 R C 柱の損傷状態

No. ②, No. ④および No. ⑤の最終載荷時の損 傷状態を**写真-1~写真-3**に示す.

No. ②および No. ④はかぶりコンクリートの 剥落が柱全長にわたり進行し,変位の増加に伴 って柱内部のモルタルが軸方向鉄筋相互の滑り により粉状となり,帯鉄筋の隙間から外に落ち 出しながら荷重低下に至った.また,No. ②およ び No. ④の柱基部の損傷状態は軸方向鉄筋のは らみ出しや破断はみられなかった.

一方, No. ②や No. ④に対して同耐力比でせん 断スパン比を 1.4~1.7 倍程度大きくした No. ⑤ は,かぶりコンクリートの剥落が柱基部付近に 顕著で,損傷が柱基部に集中した.また,7δの 載荷中(部材角 1/10 程度)に柱基部の帯鉄筋(柱 下端から約 100mm 付近)が破断し,破断箇所 では軸方向鉄筋のはらみ出しがみられた(写真 -4).同耐力比の試験体において,せん断スパ ン比が大きい方が,同じ部材角に達した際の柱 基部の軸方向鉄筋の伸び量が大きいため,外側 にはらみ出す力を柱基部で大きく負担している と考えられる.

<u>4.まとめ</u>

今回の実験結果を以下にまとめる.

- (1)軸方向鉄筋比≦23%,耐力比≦2,せん 断スパン比≦3.3の試験体の変形モードは せん断変形が卓越し,同耐力比でせん断ス パン比を4.7程度に大きくすると曲げ変形 が卓越する結果となった.
- (2) 軸方向鉄筋比≦23%, 耐力比≦2, せん

断スパン比≦3.3 の試験体は柱全長にわたり軸方向鉄筋の付着切れが顕著となり,鉄筋同士の滑りにより降伏荷重を下回った.同耐力比でせん断スパン比を 4.7 程度に大きくした試験体では損傷が柱基部に集中し,軸方向鉄筋のはらみ 出しにより帯鉄筋の破断に至った.

参考文献

1) 霞誠司・鷹野秀明・岩田道敏:高密度配筋RC柱部材の正負水平交番載 荷実験,土木学会第61回年次学術講演会,pp935-936,2006.9

写真-2 No. ④ (部材角 1/2.4)

写真-3 No. ⑤(部材角 1/10)

