打音法によるコンクリート内部の欠陥検出手法の検討

奥村組	正会員	〇川口昇平
奥村組	正会員	東 邦和
奥村組		廣中哲也

1. はじめに

打音法は AE 法、超音波法、衝撃弾性波法と同様にコンクリート内を伝わる弾性波を利用する非破壊検査で ある。ハンマーや鋼球の衝撃により弾性波を発信し、その作用により生じる表面振動を空気を介してマイクロ フォンなどの非接触型センサーで計測するため、他の弾性波法に比べ、簡便で迅速な計測が可能であり、コン クリートの浮き、剥離、ひび割れ、空洞およびジャンカなどの内部欠陥の評価に用いられている。しかし、そ の一方で、打撃装置とマイクロフォンの性能により得られる情報が異なるため、画一された判定基準は存在し ないのが実情である。本研究では、空洞のサイズと深さの異なる試験体を用いて、打音法の共振現象による周 波数応答(周波数帯特性とスペクトル強度面積)に着目した測定方法および測定精度について検討した。

2. 実験概要

2.1 試験体

図1に試験体形状、表1に空洞寸法を示す。 側面に被り25~100mm、サイズ100mm~300mm の欠陥を模擬した欠陥(発泡スチロール)のある 供試体を作製し、打撃音の測定を行う。(図1)

(黒い箇所に欠陥を設置)

表1 空洞寸法

供試体 No.	空洞サイズ	かぶり厚	空洞厚		
	100mm × 100mm				
供試体	150mm × 150mm	50mm			
1	200mm × 200mm	3011	10mm		
	300mm × 300mm				
	200mm × 200mm	25mm	1 Unin		
供試体	200mm × 200mm	50mm			
2	200mm × 200mm	75mm			
	200mm × 200mm	100mm			

関値(周波数

120

100

2.2 打音測定方法

打撃音の測定は、一般的に行われている格子状に測点を設け、その 点を打撃して判定を行う方法(以後、検査1)と、人間が行うたたき検 査と同様に検査面を均一に走査させる方法(以後、検査2)の2種類の 測定方法を施した。測定はφ25mmの鋼球により一定の力で打撃を加 える自動打撃装置と、打撃音をマイクロフォンで収録し、周波数解析 する装置を用いておこなった。試験は十分に広い屋内で行った。

3. 実験結果

3.1 周波数帯特性による判定

欠陥の検出は集音データを FFT 計算したものに閾値を設定し、その範 囲に入ってくる特定の周波数を発する箇所を欠陥として検出する。図2 に健全部の集音データと閾値、図3に異常部のデータの例、表2に検査 1の判定結果を示す。欠陥中心での判定では、辺長200mmの欠陥サイズ であれば、深さ75mmまで判定可能である(図3参照)。逆に辺長100mm 以下の欠陥検知は周波数による方法では難しい。

欠陥の大きさからみると、辺長 150mm では深さ 50mm まで検出可能であるが、欠陥中心から 10cm 離れた位置 では検知しないため、検出したい欠陥規模に応じた、密度の高い検査が必要と考えられる。

キーワード 打音法, 共振現象, 周波数応答, 周波数解析, 空洞

連絡先 〒300-2612 茨城県つくば市大砂 387 ㈱奥村組技術研究所 TEL029-865-1521

次に、表3に検査2の判定結果を示す。検査2は欠陥のある壁面に対し、ランダムに打音装置を走査させて行うため、欠陥面積に対する検出面積の100分率で評価を行った。閾値の設定による影響が特に大きかったのは被り50mm、辺長150mmの場合で、閾値を高くすると、欠陥として診断される範囲が急激に狭くなる。 供試体②の、被り100mm、辺長200mmの場合に、閾値を $32mV^2$ に上げると異常が検出されなくなった。

これらの結果より、閾値の設定が高過ぎると欠陥が見落とされ、低過ぎ ると健全部も欠陥とみなされるので、検出したい欠陥規模に応じて適切 な閾値を設定する必要があると考えられる。

3.2 エネルギー値による判定の考察

FFT 計算したスペクトルを積分したエネルギー値を求め、そ の値に閾値を設定して判定する方法がある。被り 25mm 辺長 200mm の欠陥については、欠陥部を中心に、健全部に比べエネ ルギー値が全体的に高くなる傾向が見られた。しかし、深さ 50mm、75mm、100mm の欠陥中心から外れた箇所では、健全部よ り明らかにエネルギー値が少ないケースが見られた。図4に欠 陥かぶりと打音エネルギー値の分布を示す。

これらは打撃点において、たわみ共振を起こさない、塊状欠 陥となっていると考えられる。図5にかぶり50mm、辺長100mm と150mm 欠陥のスペクトル分布の平均値を示す。健全部の平均 値と、中心以外の箇所データの平均値を比べると、0.6、1.1kHz 付近のスペクトルピーク値が、健全部に比べて小さいのが分かる。 しかし、他の周波数帯ではほぼ同じ波形となっており、0.6、1.1 kHz 付近でエネルギーが失われていることが考えられる。このこ とからある程度深い位置の欠陥およびある程度より小さな欠陥で は、振動よりも波動伝播による周波数応答が発生しやすくなり、 界面で反射が起こればエネルギー値が大きくなり、透過および散 乱すると逆に小さくなるものと考えられる。

4. まとめ

以下に今回の打音装置による検出結果についてまとめる。

- ① 本機械の周波数を利用した判定法では、閾値の設定次第で、100mm程度の深さの欠陥を判定可能である。
- ② 本機械のエネルギー値による判定では、閾値により欠陥を一意的に判定することが出来ない可能性がある。
- ③ 格子を設定して検査する場合(検査1)、概ね検出したい欠陥規模と同程度のピッチでの検査が必要である。
- ④ 人間によるたたき検査と打音検査の精度の違い、および検査速度についての検証を行う必要がある。
- ⑤ 今後室内での試験結果をもとに、屋外で風、自動車騒音等を考慮した適切な閾値を検証する必要がある。

参考文献

1) 土木学会 弾性波法によるコンクリートの非破壊検査に関する委員会報告およびシンポジウム論文集

表 2 判定結果(検査 1)

欠陥のサイズ		中心部の	欠陥中心から 10cm 離れ	欠陥中心から 20cm 離れ	
深さ	サイズ	判定	た位置での判定	た位置での判定	
25	200×200	異常	7/8 箇所 異常	6/16 箇所 異常	
50	200×200	異常	健全	2/16 箇所 異常	
75	200×200	異常	健全	健全	
100	200×200	健全	健全	健全	
50	100×100	健全	健全	健全	
50	$150\! imes\!150$	異常	健全	健全	
50	200×200	異常	健全	健全	
50	300×300	異常	6/8 箇所 異常	健全	

表3 判定結果(検査2)

	エネルギー閾値	$18 \mathrm{mV^2}$	$25 mV^2$	$32mV^2$		
供試体	パターン	異常	異常	異常		
	被り 50mm 辺長 100mm	9	4	18		
供試	被り 50mm 辺長 150mm	81	<u>38</u>	<u>44</u>		
体①	被り 50mm 辺長 200mm	34	53	44		
	被り 50mm 辺長 300mm	68	56	70		
	被り 25mm 辺長 200mm	101	104	104		
供試体②	被り 50mm 辺長 200mm	46	44	46		
	被り 75mm 辺長 200mm	15	29	14		
	被り 100mm 辺長 200mm	29	22	<u>0</u>		

