盛土型で埋設されるカルバートの土圧と変形に関する遠心実験

大阪市立大学

学 東田 淳・中村有佑(現 積水化学工業)・狭間智一吉村 洋・大阪市都市環境局 大杉朗隆・中西啓輔

まえがき 大阪市では、敷設後 50 年以上経過した口径 900mm 以上の下水道幹線カルバートの延長が 202km に 達しており、断面形状で分けると、円形が 122km、馬蹄 形が 57km、矩形が 23km である。これらの老朽幹線カ ルバートが、どの程度の安全性・耐震性を有しているか は、カルバートの老朽度合いや作用土圧の実態が不明な ため、正確に把握できないのが実情である。そこで、カ ルバートに作用する土圧の実態を調べ、耐震性を評価す るための研究を始めた。今回は、乾燥砂地盤に土被り高 を変えて盛土型埋設された円形、馬蹄形、矩形の模型カ ルバートに作用する土圧と曲げひずみの分布を、遠心加 速度 30G 場で測定したので、報告する。なお別報¹⁾で測 定結果と現行設計法の予測を比べたので参照されたい。

模型カルバート 実験で用いた3種類の模型カルバートの概要と 諸元を図-1、表-1に示す。これらのカルバートを形状(Box、Arch、 Circular)を表す頭文字をとって B-type、A-type、C-type と呼ぶ。い ずれも硬質アルミニウム製で、幅、高さ、または外径(D)はいずれ も 90 mm、長さは 148 mm である。板厚 t はカルバートの剛性、 および壁に生じる曲げひずみの出力がそれぞれ十分大きいとい う 2 条件から決めた。模型カルバートは、左右 2 つの環要素を受桁に よって連結し、この受桁に垂直土圧 σ とせん断土圧tを測定するため の細い矩形のロードセル(支柱)、および受圧板を固定している。右側 の環要素には、環壁の内外面に曲げひずみe測定用のひずみゲージを 貼付した。表-1 中の W_p は模型カルバートの重力場での重量を表す。 **模型と実験方法** 模型(図-2)は、原型を 1/30 に縮小した二次元模型で、 D=2.7 m のコンクリート製の剛なカルバートが、2.7~8.1 m の土被り 高 H で盛土下に埋設された状態をシミュレートしている。

表-2に、地盤材料として使用した乾燥珪砂(S0と呼ぶ)の一次性質を示 す。模型地盤の作成は、容器を横に倒し、模型カルバートの長軸方向に砂 を詰める横詰め方式により行い、地盤密度をρ_d=1.55 g/cm³(SOD 地盤)と ρ_d=1.43 g/cm³(SOL 地盤)の2通りに変えた。実験容器の前面と背面にはゴム

メンフレン 2 枚とシリコンク	表−2 地盤材料の一次性質	Π	B-type	SOL	18 27	2
リースでリュノリクーション を施した。	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ш	A-type B-type	SOL	9	$\begin{bmatrix} 1\\ 2\\ 4 \end{bmatrix}$

キーワード:カルバート、形状、土圧、曲げひずみ、遠心実験

連絡先: 大阪市住吉区杉本 3-3-138 · 大阪市立大学工学部 · Tel & Fax: 0606605-2725

表−1 模型カルバートの諸元							
	D	t	E _p		W _p		
Culvert	(mm)	(mm)	(kgf/cm ²)	$\nu_{\rm p}$	(gf/cm)		
B-type	90	3.3	710,000	0.33	41		
A-type	90	3.3	710,000	0.33	39		
C-type	90	3.5	740,000	0.33	35		

図-2 模型

表−3 実験条件							
Test			Η	H_{b}			
Series	Culvert	Ground	(cm)	(cm)			
I	A-type B-type C-type	S0L S0D	9	2			
Π	A-type B-type	SOL	9 18 27	2			
Ш	A-type B-type	SOL	9	1 2 4			

実験は、模型を 30G 場におき、T-25 輪荷重相当の荷重(5.45 kgf/cm²)を、幅 6.7 mm (原型で 20 cm)の載荷板 (表面粗)により模型カルバート直上の地表面に載荷した。表-3 に実験条件を示す。実験条件として、カルバー ト形状、地盤密度、埋設寸法(土被り高 H と基礎厚 H_b)を変化させて 14 ケースの実験を行った。

実験結果 図-3 に、SOL 地盤で *H* を変化させた場合の地表面載荷前の測定結果を示す。図-3 の左側の図において、マークによるプロットとラインが測定 $\sigma \cdot \tau$ 、および鉛直・水平方向の力の不平衡分を誤差配分して求めた補正 $\sigma \cdot \tau$ 分布をそれぞれ表す。両者の近似度から不平衡力が小さいことが分かる。次に、中央の図は補正 $\sigma \cdot \tau$ 分布から求めた鉛直土圧 p_v 、鉛直反力土圧 p_r 、水平土圧 p_h の分布を土被り圧 pH との比として表している。さらに、右側の図のマークによるプロットとラインは、測定 ϵ 、および補正 $\sigma \cdot \tau$ 分布とカルバート自重を外力と

して与えて計算 した曲げひずみ*ε* の分布をそれぞ れ表す。測定*ε*と計 算*ε*の良好な一致 から、土圧の測定 精度が高いこと が分かる。

中央の図に示し た $p_{v} \cdot p_{r} \cdot p_{h}$ の分布 から以下のことが 分かる。矩形カル バートの $p_{v} \cdot p_{r}$ と馬 蹄形カルバートの $p_{\rm r}$ は凹形分布を、ま た円形カルバート の p_r は山形分布を 示し、いずれも現 行設計法が仮定す る等分布とは異な る。さらに矩形カ ルバートの *p*h は現 行設計法の仮定に 近い台形分布であ るが、馬蹄形と円 形のカルバートの ph は凹形分布を示 し、現行設計法の 仮定とは異なる。

参考文献1)東田 他、盛土型埋設カ ルバートの遠心実 験結果と現行設計 法の比較、62回土 木学会年講、2007.

図-3 測定結果(SOL 地盤・H 変化・Hb/D=2/9・地表面載荷前)