繰返し載荷履歴後における構成則の予測法

1. 研究の背景と目的

繰返し荷重を受けた飽和土の強度と剛性低下は地盤 や土構造物の変状に関わる重要事項の一つであるが, 繰返し載荷履歴後に土の応力 - ひずみ関係を表す構成 則の予測法は良く知られていない.

本研究では繰返し単純せん断試験機を用いて土供試 体の繰返し履歴後の強度と剛性低下特性を調べ,その 実験結果に基づいて構成則を提案することを目的とし た.特に,細粒土である塑性・非塑性シルト,粘性土 の劣化特性の違いについて議論した.

その結果,土の構成則で繰返し載荷履歴後の応力 -ひずみ関係を予測することは,過剰間隙水圧が非常に 高いときを除く表現できた.この予測法を用いたら繰 返し載荷後の地盤の状態を検討するときに約に立つと 思われる.

2. 解析方法

Yasuhara¹⁾と Song et al.²⁾によると繰返し荷重によって 発生する強度と剛性の低下は過剰間隙水圧の増加と関 係があることが提案されている.その関係を表す方法 を Hardin-Drnevich³⁾が提案した土の構成則に代入した ら,繰返し試験を行わずに過剰間隙水圧の増加による 応力-ひずみ関係を提案した.

3. 繰返し履歴後強度と剛性低下の予測法

Yasuhara¹⁾は Ladd et al.⁴⁾と Wroth and Houlsby⁵⁾がそれぞ れ実験結果に基づいて提案した経験式を用いて式(1)と (2)のように,繰返し載荷によって発生する過剰間隙水 圧比 (=過剰間隙水圧 Δu / 初期拘束応力 $\sigma'_{v,NG}$)から強 度や剛性の予測法を提案した.

$$\frac{\tau_{f,cy}}{\tau_{f,NCi}} = \left(1 - \frac{\Delta u}{\sigma_{v,NCi}}\right)^{1 - \frac{\Lambda_0}{1 - \lambda}}$$
(1)

ここで、 τ f,NCi と τ f,cy はそれぞれ繰返し履歴後前後の

早稲田大学	正会員	〇宋	炳雄
茨城大学	正会員	安原	系一哉

静的せん断強度、 Δu は過剰間隙水圧、 $\sigma'_{v,NCi}$ は繰返し 応力前鉛直拘束応力、 Λ_0 は Ladd et al.⁴⁾が提案した経験 式での常数、 λ は膨潤指数(Cs)と圧縮指数(Cc)の比であ る. なお、過剰間隙水圧比 $\Delta u / \sigma'_{v,NCi}$ は0から1ま での範囲の中で分布する.

$$\frac{G_{cy}}{G_{NCi}} = \left(1 - \frac{\Delta u}{\sigma_{v,NCi}}\right) \cdot \left\{1 - \frac{C}{1 - \lambda} \cdot \ln\left(1 - \frac{\Delta u}{\sigma_{v,NCi}}\right)\right\}$$
(2)

ここで、G_{NCi}とG_{cy}はそれぞれ繰返し履歴前後の剛性、 CはWroth and Houlsby⁵⁾の経験式からの常数である.

式(1)と(2)の長所は繰返し試験を行わずに静的実験結 果から得られる静的構成則と係数 $\Lambda_{0,}\lambda$, C が分かれば, 繰返し載荷によって低下された強度と剛性の予測がで きることである.

4. 細粒土の強度と剛性低下特性

本研究で用いた試料はイギリスの Kueper Marl Clay(以下, KM 粘土; 粘土), 荒川シルト(塑性シルト) と DL クレイ (非塑性シルト), 以上3種類の土を比較 して検討した. 試料の具体的特性は**表**-1に表した.

表-1. 試料の特性 2)

Items	KM 粘土	荒川シルト	DLシルト
Particle Density _s (kN/m ³)	27.4	26.2	24.8
Liquid Limit w _L (%)	38.6	45.1	25.1
Plastic Limit w _P (%)	19.0	27.8	-
Plasticity Index I _P	19.6	17.3	-
Cohesion c ['] (kPa)	0	0	0
Friction Angle ϕ' (°)	25	24	23
Compression Index C _c	0.23	0.27	0.10
Swelling Index C _s	0.042	0.046	0.003
Parameter Λ_0	0.76	0.64	0.72
Parameter C	0.27	-0.5	0.65

キーワード	強度, 剛性,	過剰間隙水圧,	構成則			
連絡先	∓ 169 -8555	東京都新宿区之	大久保 3-4-1	55 - S - 803	濱田研究室	TEL03-5286-3406

また,単純せん断試験の詳しい条件は参考文献に載 せている²⁾.

5. 繰返し載荷構成則予測法

Hardin and Drnevich(1972)は式(3)のように双曲線で応 カーひずみ関係を表す構成則(H-D モデル)を提案した ³⁾.

$$\tau = \frac{G_0 \cdot \gamma}{1 + \gamma / \gamma_r} \tag{3}$$

ここで、 G_0 は微小ひずみレベルでのせん断剛性(=最大 剛性)、 γ_r は標準ひずみ(=せん断強度 τ_f / 最大剛性 G_0) である³⁾.本研究では式(3)に式(1)と(2)を代入すると式 (4)になる.式(4)によると繰返し載荷試験とその後の単 調試験を行わずに、繰返し載荷後の応力-ひずみ関係 の予測ができる.ここで、 $\tau_{f,cy}$ は式(1)、 G_{cy} は式(2)であ り、図-1は繰返し単純せん断試験後単調試験結果と提 案した予測式との比較した結果である.

$$\tau = \frac{G_{cy} \cdot \gamma}{1 + \frac{G_{cy} \cdot \gamma}{\tau_{f,cy}}} \tag{4}$$

6. 終わりに

本研究では繰返し履歴後,構成則を予測する方法を 紹介した. H-D モデルは緩い砂に適用されるモデルで あるが,本研究で使われた試料は細粒土であり,試料 が緩くなかったため予測式との差が見える.しかし, この提案法は繰返し試験がなくでも,常数 Λ_0 , λ , Cが 分かれば,繰返し載荷によって低下された強度と剛性 の予測ができることである.

謝辞

本研究は日本学術振興会の特別研究奨励費で行った研 究結果でおります.日本学術振興会に感謝の意を表し ます.

参考文献

- Yasuhara, K. (1994), "Postcyclic Undrained Strength for Cohesive Soils", J. of Geotechnical Eng, ASCE, Vol. 120, No.11, pp.1961~1979.
- 2. Song, B., Yasuhara, K., and Murakami, S. (2004), "An

estimating method for post-cyclic strength and stiffness of fine-grained soils in direct simple shear tests", Jour. of the KGS, Vol. 20, No. 2, pp. 15-26.

- Hardin, B. O. and Drnevich, V. P. (1972), "Shear modulus and damping in soils: Design equations and curves", Jour. of the Soil Mech. and Foundations Division, ASCE. Vol. 98, No. 7, pp. 667-692.
- Ladd, C. C. et al (1977), "Stress-Deformation and Strength Characteristics", Proc. 9th ICSMFE, vol.2, pp.421~494.
- Wroth, C. P. and G. T. Houlsby (1985), "Soil Mechanics, Property Characteristics and Analysis", Proc. 11th ICSMFE, vol.1, pp. 1~55.

