関東ロームの非排水強度の信頼度と盛土設計の最適化

防衛大学校 (学)熊谷尚久・村田矩応・正垣孝晴 東京電力㈱ (正)高橋 章・鶴田 滋

1. はじめに

地盤調査・試験法と盛土設計の性能規定化のために,著者らはコーン貫入試験と室内せん断試験の信頼度分析や盛土 設計の最適化に関する一連の検討を行っている¹⁾。本稿では,関東ロームを用いて約80年前に築造されたダム堤体の非 排水強度の信頼度が検討される。また,当該ロームを

用いて築造されたダム堤体の盛土設計の最適化も検討 される。

2. 供試土と試験方法

供試土は、ダム堤体として締め固めた関東ロームで ある。コーンサンプラー²⁾で採取した関東ロームの直 径d48mm,高さh450mmの試料片から、小型供試体を用 いて一軸圧縮試験UCT、三軸圧縮試験C K_0 UCと圧密試 験ILを行った³⁾。 I_p =36~47、 q_u =(35~197) kPaの範囲 の土である。

3. 非排水強度の信頼度

ILから推定した原位置の有効土被り圧 σ'_{vo} に相当するC K_0 UCの非排水強度 $c_{u(0}$ を求め、これに対する $q_u/2$ の比(+)と p_m/S_0 の関係を図-1に示す。 S_0 は供試体のサクションである。 p_m は供試体が原位置で受けていた平均圧密圧力であり、 K_0 =0.5と仮定して σ'_{vo} の2/3

Jepth, z (-m)

とした。両者の関係(+)を最小自乗 近似して実線(1-0.391 ln p_m/S_0)で示 す。相関係数rは 0.74 である。また, 破線は自然堆積土⁴⁾に対する回帰式で ある。前者は後者の下に位置し,応力 解放と試料採取に伴う試料の乱れは, 当該ロームで大きいことがわかる。当 該ロームの $q_u \geq S_0$ からそれらの近似式 を用いて推定した原位置の非排水強度 $q_{u(t)} cc_{u(t)}$ で除した比(×)を図-1 に 併記している。これらのプロットは (+)の範囲を反映して変動が大きい

が、1を中心に位置している。

図-2 はBor.3 の土性図である。粒度 組成等の差を反映して,同じBor.の同じ深度 であっても含水比は 50%程度の変動を有して いる。非排水強度 c_u として, q_u /2 に加えて $c_{u(1)}$ $2 eft せてプロットした。<math>q_u$ /2 は $c_{u(2)}$ と $q_{u(1)}$ /2 の 50%程度と小さいが,このような傾 向は他のBor.でも同様であった。応力解放と 試料採取に伴う強度低下は自然堆積した有機 質土や粘性土⁴⁾と同様に関東ロームでも大き い。

4. 盛土設計の最適化

全応力解析としてqu/2の平均値を供試体の

図-3 安定解析結果

キーワード:関東ローム,試料の乱れ,非排水強度,性能設計

連絡先 〒239-8686 神奈川県横須賀市走水 1-10-20 防衛大学校 建設環境工学科 TEL 046-841-3810

図-1 原位置強度の推定結果

X + 0

100

75

50

25

測定深度に応じて図-3の③,④,⑤層に入れて 安定解析を行った。地震力に関しては、海溝型地 震を想定して水平深度を 0.15 として, 同図中に示 す最小安全率の円弧を得た。この円弧に対して, 地盤の非排水強度の採用値に関する信頼性検討を 行った。

 $q_{\rm u}/2$, $c_{\rm u(I)}$, $q_{\rm u(I)}/2$ から求めた破壊確率 $P_{\rm F}$ と供試 体数nの関係を図-4に示す。PFの定義と計算方法 は文献1と同様である。qu/2は強度が小さいこと に起因してnに関係なく破壊するが、 $q_{uD}/2$ の P_F は、n=3 で100%から減少してn=34 で0%になる。 c_{u0} は、試験総数が7と少ないことに加え、総ての 強度が揃って大きいことを反映して, n=3 で $P_{\rm F}=0\%$ になる。 $P_{\rm F}\leq 5\%$ を満足する $c_{\rm u(I)}$ と $q_{\rm u(I)}/2$ のn は、それぞれ2と13である。*c*uが*P*fに及ぼす影響 が大きいことが分かる。このことは、採取試料の 品質を考慮して,設計値を性能規定化できること を意味する。また、標準寸法の供試体は、採取試 料と費用の制約から多くの試験を行うことが困難 であるが、小型供試体はこの点でも有利である。

nとPFの関係を求めるため、式(1)で計算される 盛土の総費用 C_t を検討する。 $q_u/2$, $c_{u(I)}$, $q_{u(I)}/2$ のnとCtの関係を求め、地盤の非排水強度採用値の性 能規定化へ向けた検討を行う。

 $C_{t}=C_{C}+P_{F}\times C_{F}+C_{I}$ (1)

ここに、C_C:盛土建設費(608 百万円)、C_F:破壊復旧費(1,037 百万 円), C_I:初期の調査・試験費(10 百万円)であり, nの関数はP_Fと Ciになる。これら費用の算出は、当該ダムの実金額及び想定金 額を用いた。また、30m幅の破壊を想定している。

 $q_u/2, c_{u(I)}, q_{u(I)}/2$ から求めた $C_t \ge n$ の関係を図-5に示す。ま た, C_t が最小となるn, P_F , C_t を表-1にまとめた。 $q_u/2$ は強度 が小さいことに起因して、nが増してもCtが低下することは無く 一次関数的に増加している。一方, qu(l)/2 はnの増加につれ非排

図-5 非排水強度と総費用の関係

 $q_{\rm u}/2$

 $C_{u(I)}$

 $q_{\rm u(I)}/2$

$x = 1 + C_{t} (min)^2 + \lambda \ln C I_F$							
Cu	n	Ct (min) (Million yen)	$P_{\rm F}(\%)$				
$q_{ m u}/2$	_	_	100				
$q_{\mathrm{u(I)}}/2$	15	792	3.3				
$C_{u(I)}$	3	645	0.2				

たちラスットD

水強度の平均値の信頼	夏が向上しCtの低下が	著しい。n=15 でC _t	は 792 百万円の最	長小値となる。	c _{u(I)} はn=3 、	で C_t の最小値
が 645 百万円となる。	$q_{u(I)}/2$ との結果の差は,	試験個数が7と少	>なかったことが原	因であると考え	ている。	

4. おわりに

採取試料の品質確保を前提とすれば、地盤強度採用値も性能規定が可能となる。また、各種せん断・応力条件下の強 度・圧密特性がコーンサンプラーで採取したd48mmの試料片から測定できるので、小型供試体は調査・試験費用の削減 に加え、調査・設計の精度向上に寄与できると考えている。そして、原位置非排水強度としてquotを用いれば、盛土形 状をスリム化できる可能性もある。

参考文献:

- 1) 高橋・正垣・桜井:コーン貫入試験と室内せん断試験の信頼度分析と盛土設計の最適化,土と基礎,54(8), pp.25-28, 2006.
- Shogaki, T., Sakamoto, R., Kondo, E. and Tachibana, H.: Small diameter cone sampler and its applicability for Pleistocene 2) Osaka Ma 12 clay,

Soils and Foundations, 44 (4), 119-126, 2004.

- 3) 熊谷・岩崎・正垣・高橋・鶴田:各種せん断試験による関東ロームの非排水強度,土木学会年次学術講演会,2007.
- Shogaki, T.: An improved method for estimating in-situ undrained shear strength of natural deposits, Soils and Foundations, 4) 46 (2), 1-13, 2006.