地すべり地山トンネル坑口における AGF工法と垂直縫地工法の地表面沈下抑制効果

正会員	〇三谷浩二
非会員	高下正剛
学生会員	荒木裕行
正会員	長谷川修
	正会員 非会員 学生会員 正会員

1. はじめに

高知自動車道黒田トンネル北坑口は地すべり地 に位置している. II 期線施工時,トンネル上部に 民家が存在していたことに加え, I 期線では既に 供用が開始されていたことを考慮し,地山の緩み および地表面沈下の抑制を目的として,長尺鋼管 先受工(AGF工)と垂直縫地工を施工した.それ ぞれの補助工法が有する施工効果については広く 認められているものの,異種の工法を近接区間で 採用する事例は少ないため,工法間での比較評価 はあまりなされていない.そこで,施工時の計測デ ータを比較分析することにより,各補助工法が有 する変位抑制効果の比較を行った.

2. 地形·地質概要

黒田トンネルは三波川変成帯に位置し、北坑口 周辺は愛媛県により地すべり防止地域に指定され ている.北坑口は想定地すべりの下部に位置して おり、トンネル縦断方向と地すべりの滑動方向は 平行している.主な岩質は黒色片岩であり、北坑 口より約 100m の区間には、崩積土と強風化を受 けた黒色片岩が分布している(図-1).

3. 補助工法の概要

AGF 工は深礎杭より南部の区間において採用 し, 直径 114.3 mmの AGF 鋼管を打設長 12.5 mで 4 シフト 33 m にわたって施工した. 縫地工は深礎杭 から坑口まで縦断方向 60 m, 横断方向 24 m にわ たる区間で施工された. 縫地ボルトはD32 を用い,

図-1 黒田トンネル北坑口施工概要図

インバート位置までの打設が行われた. AGF 区間と縫地区間との間約 5mでは, AGF 鋼管のラップが不足していたため,結果的に無対策区間となった.また,これらの区間では変位抑制を目的として,早い段階でインバートの閉合を行う早期断面閉合工法も併用されている.

4. 計測結果と比較分析

対象とする地表面沈下計測点は,AGF 区間上部の測点 d1,縫地区間上部の測点 e6,そして無対策区間上 キーワード 山岳トンネル,補助工法,AGF 工法,垂直縫地工法,地表面沈下 連絡先 〒760-0065 香川県高松市朝日町 4-1-3 西日本高速道路株式会社 TEL087-825-1922 部の測点 e7 とし, それぞれにおける地表面沈下計測の結果を図-2~図-4 に示す.

各測点とも上半切羽が約 10m手前に接近した時点で 地表面沈下が生じはじめ,徐々に変位発生速度が大きく なる.そして,測点近傍でインバートが施工されること によって変位発生速度は小さくなり,地表面沈下は概ね 収束する.

上半切羽通過時の変位量である先行変位量を比較する と,無対策である e7 が 71 mmであるのに対し,AGF 区間 の d1 では 24 mm,縫地区間の e6 では 9 mmと低減効果が見 られる.最終変位量についても e7 が最も大きく,次いで d1,e6 の順となっているが,最終変位はインバートによ る断面閉合効果が非常に大きく影響していることに加え て,インバート施工時期と切羽離れの関係は各測点にお いて一律ではないことを考慮すると,補助工法の違いを 適切に評価できない可能性が高い.

各測点の沈下状況と上半切羽位置との関係を図-5 に 示す.可能な限りインバート施工による影響を排除する ため,変位が発生してからインバートが接近するまでの 変位を対象とした.切羽通過前においては,測点 d1 と測 点 e6 の近似直線が測点 e7 と比べて緩やかになっている ことから,両補助工法は先行変位抑制効果を有しており, また,測点 e6 が最も緩やかであることから AGF 工より 縫地工の方が高い効果を持つことがわかる.一方,切羽 通過後においては,測点 d1 と測点 e7 が同様の挙動を示 していることから, AGF 工の変位抑制効果はそれほど高 くないと見られる.

5. まとめ

無対策区間の先行変位量を基に比較すると,AGF工の 先行変位抑制量は約45 mm,縫地工の変位抑制量は約60 mmとなる.縫地工は先行変位と切羽通過後に発生する変 位の両方に対して抑制効果が見られるが,AGF工は先行 変位に対する抑制効果が主であり,切羽通過後に発生す る変位の抑制効果は高くない.また,インバートの早期 施工による断面閉合効果は,地表面沈下に対しても非常 に高い抑制効果を示すことが改めて確認された.

6. 課題

地表面沈下に影響する因子としては、補助工法の有無 やインバートの施工時期のほか、地質的差異などが挙げ られる.これらの因子を考慮した上で、補助工法の導入 が変位発生に与えた影響を分析し、より具体的な評価を 加える必要がある.

図-5 地表面沈下経距変化図