断層運動を考慮した津波遡上シミュレーションの開発

東京工業大学	正会員	〇井上	修作
東京工業大学	非会員	久保	剛太
東京工業大学	正会員	大町	達夫

1. 研究目的

津波の挙動を数値計算によって明らかにすること は防災上重要であり、多くの研究がなされている. 一方、従来の長波近似式による数値計算法では、近 地津波において正しい計算結果が得られない場合が あるなどの問題点が指摘されている.そこで、大町 ら 1)は津波の初期波形の仮定にも原因があるとし、 津波の生成過程に断層運動を考慮した「動的津波解 析」の開発を行った.しかしながら、これまでの動 的津波解析手法は津波防災でもっとも重要と言える 遡上解析ができないなどの問題も多く含まれている.

そこで本研究では,既往の動的津波解析手法を改 良し,津波の発生から伝播・遡上までを扱うことの できる動的津波解析手法の開発を目的とする.

2. 動的解析手法の概要

本研究では、地震時の動的地盤変位を海底面の流 体部分に流体解析の境界条件として時々刻々入力す ることにより津波を発生させる、地盤解析は半無限 弾性体と仮定し、境界要素法を用いて解析する.

流体部の解析には,基礎方程式にはNavier-Stokes 方程式と連続式を用い,これらの式を差分式(SOLA 法)²⁾を用いた計算した.自由表面の取り扱いには, 計算負荷の低減や,既往の動的津波解析との結合等 の理由から高さ関数法を改良して用いた.

3. 流体の先端条件

3.1 先端条件の処理

遡上解析の眼目は、移動境界問題をどのように解 くかという点である.本研究で用いている高さ関数 法は、容器に水が満たされているような領域の計算 に適した方法であり、水の移動には向いていない. そこで本研究では、便宜的に厚さ0の水を配置する ことによって遡上計算を可能とした(図1).

3.2 孤立波の入射実験

先端条件を検証するために、斜面への孤立波の入 射実験を行い(図2,図3),その結果の遡上高を Synlakis³⁾の行った砕波しない孤立波の理論式,砕波 する孤立波の水槽実験式の結果と比較を行った.

まず、 $\Delta Z=0.05$ 一定として計算を行ったところ、 図4の計算結果①ように、H/D が小さくなるにつれ て精度は悪くなり、H/D=0.03 で遡上しなくなった. 次に、 $\Delta z=0.025$ とし、さらに、H> Δz の条件下 で H/D を変化させて数値実験を行ったところ、図4 中の計算結果②となった.

図1 厚さ0の水を配置する遡上解析モデル

キーワード 津波, 遡上, 断層運動, SOLA法, 動的地盤変位 連絡先 〒226-8502 神奈川県横浜市緑区長津田町4259-G3-2 東京工業大学 TEL045-924-5605

図4 数値実験結果

この結果から、本研究で用いた遡上計算方法でも、 メッシュサイズに気をつけることで正しい遡上高が 得られることがわかった.また、本計算においては 水面メッシュと地面メッシュが同一メッシュになら ないという条件が必要であった.

4. 津波の発生・伝播・遡上シミュレーション

以上の先端条件とさらにメッシュの細分化を組み 合わせ、津波の発生・伝播・遡上シミュレーション を行った. 大領域での計算では領域を5つに分割し, メッシュ間隔 1024m×1024m×256m (領域1) か ら4分の1づつ細分化し、遡上域では4m×4m×1m (領域5)となっている.計算モデルと地盤の計算

図5 計算モデルと断層パラメータ

図7 領域5での遡上の様子

に用いた断層パラメーターを図5に示すが、計算の 都合上,各領域の計算領域も縮小している.領域1 で約100km四方程度,領域5では700m×400m程 度の計算領域であり、5つの領域をムt=0.1 s として 同時に解く.

津波の発生には地盤の計算結果を各領域に入力し ている. なお, 既往の動的津波解析手法では, 地震 波の入力に速度のみを用いているが、近地津波の場 合は地殻変動によって, 地形が変化する可能性があ るので、速度と合わせて変位も各領域の海底に入力 を行った.

図6に領域1での津波が発生・伝播している様子 を示し、図7に領域5での津波の遡上の様子を示す. 現在のところ,引き波の際に挙動が不安定となり, 計算が終了してしまう.これは,波が引いていくこ とで、メッシュのサイズより小さくなっていく波の 挙動を高さ関数法で表現しきれていないためと考え られ、今後の課題である.

5. まとめと今後の課題

本研究では, 高さ関数法を用いて遡上計算を行っ た. このとき, 波高より小さなメッシュサイズを設 定すれば、十分な精度が確保できることを確認した. 一方,現状では引き波以降の挙動が上手く行えない, などの課題が挙げられる.

参考文献

1) 大町達夫, 築山洋, 松本浩幸: 断層運動に伴う動 的地盤変位を考慮した津波シミュレーションの評価, 海岸工学論文集, 1999

2) C. W. Hirt, B. D. Nichols, N. C. Romero : SOLA, А Numerical Solution Algorithm for Transient Fluid Flows, LA-5852, 1975

3) Synolakis, C.E. : Runup of solitary wave, J.

図6 領域1での津波 の発生と伝播

120.0(s)