出水時における浮遊砂濃度の基礎式の一考察

独立行政法人 寒地土木研究所 正会員 吉川泰弘 独立行政法人 寒地土木研究所 正会員 渡邊康玄

1. はじめに

出水時に流下する浮遊砂 (SS) は栄養塩類を吸着¹⁾し ているため, SS の挙動を把握する事は河川環境を維持 および管理する上で重要である.著者らは SS の挙動を 把握するために再現計算¹⁾を実施している.SS の計算 では SS を横断面水深平均値として扱い,2つの仮定を 設けて計算を実施している.1つ目は横断方向の拡散 は瞬時に生ずるとしたものであり,2つ目は1横断面に おいて SS 濃度分布は1つという仮定である.この仮定 に基づいた SS の計算値と観測値はある程度の一致をみ ているが,この仮定についての検討を行う必要がある.

本論文では、横断方向拡散は瞬時に生じて SS 濃度 分布は1つとした従来の計算法と、横断方向拡散は生 じず SS 濃度分布は低水敷と高水敷で別々の分布を有 するとした計算法について比較および検討を行う.ま た、準2次元計算から導出される横断方向流速を用い て、SS の横断方向の移流と拡散を考慮した計算を実施 し断面平均 SS への影響について明らかにする.

2. 対象とする流域と出水

対象流域は,北海道道南に位置する沙流川 (河床勾 配 1/500~1/800) であり道内でも屈指の急流河川であ る.対象出水は,SS のピーク観測を実施している 2001 年 9 月洪水で 1969~2004 年の沙流川橋付近における 年最大流量でみると 3 番目に大きな出水である.再現 計算の期間は観測期間を含む 60 時間,区間は KP0.4~ KP21.2 である.図-1 に流域と計算区間を示す.再現 計算の計算断面は低水敷,中水敷,高水敷とした複々 断面であり,流れは準 2 次元不定流で扱い,土砂は混 合粒径で掃流砂と浮遊砂 (SS) を考慮した河床変動計算 である.

3. 浮遊砂濃度の基礎式と計算結果

1 横断面において,横断方向の拡散は瞬時に生じて SS 濃度分布は1つとした計算法(以下,全断面法)と, 横断方向の拡散はゼロとし低水敷と高水敷は各々独立 した SS 濃度分布を有するとした計算法(以下,各断面 法)の計算値 SS の比較および検討を行う.

(1) 基礎式

再現計算の計算断面は複々断面としているが,ここでは簡単のため複断面の場合について記述する.計算 断面モデルを図-2に示し,基礎式を以下に示す.

a) 全断面法

断面平均 SS は,高水敷での浮上沈降量が影響を与える事を表す式 (1) により求めた.

$$\frac{\partial \left(\overline{C_i} \left(H_t B_t + H_k B_k\right)\right)}{\partial t} + \frac{\partial \left(\overline{C_i} \left(U_t H_t B_t + U_k H_k B_k\right)\right)}{\partial x} = \frac{\partial}{\partial x} \left(\epsilon \frac{\partial \left(\overline{C_i} \left(H_t B_t + H_k B_k\right)\right)}{\partial x}\right) + B_t \left(q_{suit} - W_{fi} C_{bit}\right) + B_k \left(q_{suik} - W_{fi} C_{bik}\right) \quad (1)$$

H:水深 [m], B:幅 [m], U:縦断方向流速 [m/s], $\overline{C}:$ 浮遊砂濃度, $C_b:$ 浮遊砂基準点濃度, $q_{su}:$ 浮遊砂浮上 量, $W_f:$ 浮遊砂の沈降速度, $\epsilon:$ 渦動粘性係数 (\simeq 拡散 係数), 添え字 i は粒径を表し, 添え字 t は低水敷, 添 え字 k は高水敷に既定される値を表す.

b) 各断面法

低水敷と高水敷の独立した平均 SS は式 (2), (3) に より求めた. 断面平均 SS は次式により算出した. $\overline{C_i} = (\overline{C_{it}}H_tB_t + \overline{C_{ik}}H_kB_k) / (H_tB_t + H_kB_k)$

$$\frac{\partial \overline{C_{it}}}{\partial t} + \frac{\partial \left(\overline{C_{it}}U_t\right)}{\partial x} = \epsilon \frac{\partial^2 \overline{C_{it}}}{\partial x^2} + \frac{q_{suit}}{H_t} - \frac{W_{fi}C_{bit}}{H_t} \quad (2)$$
$$\frac{\partial \overline{C_{ik}}}{\partial t} + \frac{\partial \left(\overline{C_{ik}}U_k\right)}{\partial x} = \epsilon \frac{\partial^2 \overline{C_{ik}}}{\partial x^2} + \frac{q_{suik}}{H_k} - \frac{W_{fi}C_{bik}}{H_k} \quad (3)$$

(2) 計算結果

全断面法と各断面法による断面平均 SS の観測値と計 算値を図-3 に示す.両者とも観測値よりも断面平均

Key Words: 出水,浮遊砂,高水敷,数値計算,沙流川,複断面 〒 062-8602 北海道札幌市豊平区平岸1条3丁目1番34号独立行政法人土木研究所寒地土木研究所 TEL011-841-1639

SS が小さい.全断面法の区分別 SS の観測値と計算値 を図-4に示す.細砂と粗砂を計算で再現できていない 事が分かる.実現象として図-5のような河岸崩落によ る SS の増加があったが,計算ではこの現象を考慮して いない.この事により図-3において断面平均 SS の計 算値が観測値よりも小さく見積もられたと推定できる.

また,図–3の各断面法の断面平均SSは,全断面法 に比べて小さい.各断面法において低水敷と中,高水 敷に平均SSを分けて図–6に示す.中,高水敷の平均 SSは低水敷よりも小さいため,図–3の断面平均SSは 小さく見積もられたと分かる.つまり,中,高水敷の 平均SSは実現象よりも過小評価されていると言える. 実現象として流線の高水敷乗り上げによる浮上量の増 加が考えられるが,今回の計算は準2次元計算である ため,高水敷乗り上げ時の河道の平面形状に見合った 流量配分を適切に評価出来なかった事も要因として考 えられる.また,一例として高水敷のマニングの粗度 係数と浮上量式のKを大きめに設定し計算を実施した が,SS濃度の増加は見られなかった.

4. 横断方向の移流と拡散

各断面法の計算手法の一つとして,SSの横断方向の 移流と拡散を考慮した計算を実施した.横断方向流速 (V)は,準2次元計算から算出される補正後の流速 (U'_k) と補正前の流速 (U_k) を用いて,質量保存則を用いた式 (4)より算出した.低水敷と高水敷の移流と拡散を考慮 した基礎式を式(5),(6)に示す.移流項と拡散項の値

$$V = \frac{H_k B_k (U'_k - U_k)}{H_k \Delta x} \tag{4}$$

$$\frac{\partial \overline{C_{it}}}{\partial t} + \frac{\partial \left(\overline{C_{it}}U_t\right)}{\partial x} + \frac{\partial \left(\overline{C_{itk}}V\right)}{\partial y} = \\ \epsilon \frac{\partial^2 \overline{C_{it}}}{\partial x^2} + \epsilon \frac{\partial^2 \overline{C_{itk}}}{\partial y^2} + \frac{q_{suit}}{H_t} - \frac{W_{fi}C_{bit}}{H_t}$$
(5)

$$\frac{\partial \overline{C_{ik}}}{\partial t} + \frac{\partial \left(\overline{C_{ik}}U_k\right)}{\partial x} + \frac{\partial \left(\overline{C_{itk}}V\right)}{\partial y} = \\ \epsilon \frac{\partial^2 \overline{C_{ik}}}{\partial x^2} + \epsilon \frac{\partial^2 \overline{C_{itk}}}{\partial y^2} + \frac{q_{suik}}{H_k} - \frac{W_{fi}C_{bik}}{H_k} \tag{6}$$

計算結果を図-7 に示す. 断面平均 SS への拡散の影響は小さく移流の影響は大きい. 横断方向の移流について計算結果を精査したところ,中,高水敷の平均 SS は低水敷よりも大きく,高水敷乗り上げ時に,SS が低水敷から高水敷へと移流により流出する計算であった. 一方,横断方向の拡散は移流に比べて断面平均 SS への影響は小さいと分かった.

5. おわりに

本論文の浮遊砂濃度の基礎式の検討から,浮遊砂濃 度の基礎式に関して河岸崩落による細砂や粗砂の SS の 増加や,流線の高水敷乗り上げによる SS 浮上量の増加 を考慮する事が重要であると示唆された. SS の横断方 向の移流と拡散を考慮した本論文の計算手法では,移 流の方が拡散に比べて断面平均 SS への影響が大きいと 分かった.

参考文献

吉川泰弘, 渡邊康玄:物質輸送に与える大規模洪水の影響,北海道開発土木研究所月報,9月号,2005.