気液スラグ流における気相膨張とスラグ流速について

日本大学大学院	学生会員	後藤	吉範
日本大学大学院	学生会員	山田	泰正
日大生産工学部	フェロー会員	遠藤	茂勝

1.はじめに

気液二相流は発電プラント、化学工業、原子炉冷却 装置などに多く見られる。また、気相と液相の分離が 容易であり粘性摩擦の低減が計れることから、低圧力 で高速輸送が可能となりアオコ水の輸送に期待される。 淡水域で発生するアオコ水は水域から回収する必要が あるが、アオコは加圧することで生命活用をつかさど る細胞のガス胞や細胞そのものを破砕されることが明 らかとなっているため、スラグ流で輸送する事でアオ コを処理することが可能である。また、タンカーのバ ラスト水のO3による殺菌にもスラグ流が応用できる。 しかし、従来の研究において冷却装置など短距離の研 究が多く、アオコ水の輸送など長距離を対象とした研 究が少ないため未解明の部分が多い。また、気液二相 流は間欠流のため液相と気相の界面で複雑な流動特性 を持っている。そこで、本研究では管路全長を変化さ せていくことで、長距離気液二相流の流動特性を把握 する目的で管路全長を変えて管路内におけるスラグ流 速度を検討した。

2.実験概要及び実験装置

本研究で使用した実験装置は Fig-1 に示すように 管内径 d=38mm の透明なビニールパイプを用い、気相 である空気と液相である水を同時かつ連続的に供給す ることによりスラグ流を発生させた。実験条件は Table-1に示した 30 条件と管路全長 70m, 150m, 310m, 420m, 620m の 5 条件で行った。測定内容は、スラグ 流速度 V1 ~ V6 の 6 地点、圧力は圧力計を用いた P0~ P6 の 7 地点で測定をした。スラグ流速度は Fig-2 に示 した光透過量測定装置を用いて測定した。これは、長 さ 1.50m のアクリル板を箱状に組み合わせ、赤色 LED と受光センサーをアクリル板の側面に 1m の間隔に取 り付けた物を二ヵ所に配置し、光の透過量を計測した。 これらから、液相が通過した時間で、スラグ流速度、 気液相長の長さを算出した。

Fig-1 実験装置概要

Qa	Qw	Qa	Qw	Qa	Qw
(NI/min)	(I/min)	(NI/min)	(I/min)	(NI/min)	(I/min)
20	12.0	60.0	12.0	140.0	12.0
	20.0		20.0		20.0
	28.0		28.0		28.0
	36.0		36.0		36.0
	44.0		44.0		44.0
	52.0		52.0		52.0
40.0	12.0	100.0	12.0	180.0	12.0
	20.0		20.0		20.0
	28.0		28.0		28.0
	36.0		36.0		36.0
	44.0		44.0		44.0
	52.0		52.0		52.0

70mのみQa=20(NI/min)を使用

Fig-2 光透過量測定装置

キーワード: 気液二相流、スラグ速度、 気相膨張連絡先 〒272-8575 千葉県習志野市泉町 1-2-1 TEL047-474-2445

3.実験結果及び考察

全長の異なった管路による管内圧力を示したもの が Fig-3 である。横軸に無次元化した流動距離 I/L と 縦軸に管内圧力 Pをとり流動距離による変化を示し たものである。これを見ると、流動距離が長くなる につれて圧力が低下していることが分かる。また、 管路全長が長いほど初期圧力が高いことが分かる。 これは、管路全長が長くなるほどスラグの個数が増 加し液相の粘性抵抗が多くなり気相が圧縮するため に、初期圧力が増大していると考えられる。また、 供給口付近と比べて出口付近では管路内のスラグ個数 が減少し出口が大気開放されているため圧力が低下す ると考えられる。

> $Vs = C_2 \times J_T$ Vs:スラグ速度 C_2 :係数 J_{T0} :容積流束(Qa/A + Qw/A)

 J_{Tn} : 容積流束(Qa'/A + Qw/A)

この式で C_2 は J_{T0} に対応し C_2 'は J_{Tn} を用いたものである。Qa'は圧力を考慮した流量である。

Fig-4のグラフ見るとC2の値は流動距離が長くなる につれて増加していることが分かる。これは、流動距 離が進むにつれて、気相が膨張しスラグ流速度を増加 させていると考えられる。また、Fig-5を見るとC2'の 値は管路の各地点においてほぼ一定値となっている。 これは、C2'の値が気相の膨張でスラグ流速度に反映さ れているものと考えられる。また、Fig-6に示した管路 長が長い場合は気相の圧縮性の影響が顕著に表れる。 4.まとめ

気相スラグ流では、気相の圧縮性の効果により管路 の出口付近にいくほど流速が増大することがわかった。 これは、気相が膨張した事によるもので、各地点の圧 力を考慮した容積流速の関係をみるとスラグ流との比 C₂'は、ほぼ一定値でスラグ流が気相の膨張により速度 増加していることが裏づけられた。

参考文献

ここで、

1) 山田泰正、落合実、遠藤茂勝:遷移流動を伴う気液

Fig-6 流動距離と C₂,C₂'

スラグ流における加速損失について、土木学会海岸 工学論文集、Vol.53. pp911-915、2006 年