小規模な貯水池に導入された流動促進装置による溶存酸素の改善効果

呉工業高等専門学校専攻科 学生会員 ○中野光隆 呉工業高等専門学校 正会員 黒川岳司

1. 序論

貯水池での水質悪化は、水域の閉鎖性に基づく滞留時間の長さが原因のひとつとして挙げられる. つまり、流動性が弱く 水温成層が発達しやすい水域では、表層の溶存酸素を多く含む水が下層と輸送されにくく、底層付近では貧酸素状態になり、

水質悪化をまねきやすい. そこで本研究では、試験的に流動促進装置が導入されてい る貯水池において、水質改善効果を定量的に評価することを目的とし、流動・水質モ デルを構築し、流動促進装置による溶存酸素の改善効果について考察する.

2. 対象貯水池の地勢・地形と現地観測

本研究で対象とする貯水池は、湛水面積2.6 ha、流域面積0.9 km,総貯水量は約112000 m[®]の小規模な貯水池である.平均水深は約6m,最深部は約10mとなっている.現地 では水質(水温, DO, pH, 濁度)の測定が鉛直 1mごとに各項目について行われて いる. 今回は2006年11月8日10時・13時・17時に測定したデータをモデルの検証 に使用した.

3. 流動促進装置の概要

対象貯水池には水質改善を図るため、流動促進装置((株)共立「みずきよ」型式: MK-Ⅲ) が設置されている.装置は浮体部と水流発生部に分けられる. 浮体にはポ ンプが設置されており、表層水を下層に設置してある水流発生部へ圧送している. 浮体部から運ばれてきた表層水は、水流発生部において後方から周囲水を連行する ことで、周囲の底層水と撹拌混合しながら水平方向へ噴出される(図1).

4. 貯水池流動の水質モデル

流動促進装置による溶存酸素の改善効果を検討するために流動・水質モデルを構 築した.モデルは鉛直1次元とし、溶存酸素収支モデルと鉛直循環モデルから成る. 4-1 溶存酸素収支モデル

本研究では、水質の指標として溶存酸素濃度 DO【mg/l】を用いる. DO の収支は 図2のように考えられる.水深方向では有光層において光合成が行われ,無光層以 下において呼吸・分解が行われる. その他の死滅, 分解による酸素消費は微生物濃 度によって決定される.また、底層では底泥による酸素消費があり、表層では大気 との再曝気が生じている. DO の収支を式(1)で表す.

$$\frac{\partial DO}{\partial t} = Gp \cdot Cp \cdot IC \cdot Y_{O:C} \cdot (1 - Kp) - Dp \cdot Cp \cdot IC \cdot Y_{O:C} - k_{DT} \frac{DO}{K_{DT} + DO} \cdot f_{DT}(T) \cdot D_T + D \frac{\partial^2 DO}{\partial z^2} + K_a \cdot (DO_s - DO)\Big|_{z=0} - \frac{K_B}{h}\Big|_{z=h}$$
(1)

ここで、Gpは光合成によるクロロフィルa生産量、Cp【mg/l】はクロロフィルa濃度、ICはクロロフィルaと炭素の重 量換算比、 Y_{ox} は酸素と炭素の重量換算比、Kp 【sec⁻¹】は光呼吸率、Dp は呼吸・死滅によるクロロフィル a の消費量、 k_{DT} 【sec⁻¹】はデトリタスの分解率, K_{DT} 【mg/l】はデトリタスの分解に関する半飽和定数, $f_{DT}(T)$ は温度制御関数, D_T 【mg/l】 はデトリタス濃度、 K_a 【sec⁻¹】は再曝気係数、 DO_s は飽和溶存酸素量、 K_B 【mg/m/s】は単位面積当たりの酸素消費速度、h

【m】は直上水の高さである. z 軸は鉛直上向きとした.

4-2 貯水池での水温収支モデル

自然の状態において、水温は主に太陽からの日射エネルギーと放射エネルギーに よって決定される. 熱量は結果的には短波日射量 Os と蒸発熱量 Os に支配される. 従って、本研究では正味の加熱量を Q_s と Q_e の差で表す。 Q_s は太陽の動きに依存し、 O。は気温と風速に依存している. 日射により暖められた表層水の水温が熱伝導によ り下層へ伝達される.これは式(2)で表される.

ここに、 Q_n [J] は層間の水温差による熱量の輸送量、 λ_n [W/m/C] は熱伝導率、

t 【sec】は時間, s 【m²】は暖められる表面積, T_n 【C】各層の水温, l 【m】は層の厚さである.

- キーワード 貯水池,溶存酸素,流動促進装置,水質モデル,水質改善
- 〒737-8506 広島県呉市阿賀南2丁目2番11号 連絡先 呉工業高等専門学校 TEL • FAX 0823-73-8481

 ∇

°0

 \cap

- $Q_n = \lambda_n \cdot t \cdot s \cdot \frac{T_n T_{n+1}}{\ell}$ $\tau_s = \rho_a C_f U_{10}^2$ (2)
- (3)
- $u = V_{S}\left(1 + \frac{z}{h}\right)\left(1 + \frac{3z}{h}\right)$ (4)
- $K_{Z} = K_{Z0} f(R_{i})$ (5)
- $f(R_i) = (1 + m1 \cdot R_i^{m2})^{m3}$ (6)
- (7) $\lambda_z = K_Z \cdot \rho_W \cdot C$

4-3風による乱れの効果の導入

風によるせん断応力(式(3))を用いて,式(4)によって推定される鉛直流速分布を求める.その流速分布と密度分布 からリチャードソン数 R_i を算出し,式(5)のように鉛直渦動粘性係数を R_i の関数で表すことを考える.これは,成層化関 数 $f(R_i)$ として提案されている(式(6))¹⁾².さらに式(7)に示すように,鉛直渦動粘性係数を式(2)の λ_n に変換した λ_a を用いることで風による混合を導入したものとする.

ここに、 τ_{s} [N/m²] は風の応力、 ρ_{a} [kg/m³] は空気の密度 (=1.293)、 C_{f} は水面との摩擦係数、 U_{10} [m/s] は高さ 10m における風速、u [m/s] は任意の水深 z における流速、 V_{s} [m/s] は表面流速、h [m] は全水深、 K_{20} [m²/s] は中立状態における鉛直渦拡散係数、 $f(R_{i})$ は成層化関数、m1、m2、m3 はモデル係数、 λ_{z} [W/m/C] は渦動粘性係数より求めた熱伝導率、C [J/C/g] は水の定圧比熱容量である.

4-4 鉛直循環モデル(流動促進装置による循環作用のモデル化)

図3のように流動促進装置は高温の表層水をポンプによって底層に送り込んでいる.よって水温としては、底層へは密度の軽い水 (T_0) が送られることになり、底層の水温 (T_n) の層と混合される.

二層目以降は密度差により計算実行の有無を決定する.前層で計算 した水温から求めた密度が上層の密度よりも低い場合(不安定状 態)は、下層との水温の平均化計算を行う.前層で計算した水温に より求めた密度が上層の密度よりも高い場合(安定状態)は、計算 を実行しない.

また, DO, クロロフィ ル a 濃度, デトリタス濃度 の輸送に関してはポンプ の送流量の割合に応じた 物質量が送り込まれるも のとした.

表層

 T_0

 T_1

 T_{n-1}

 $T_{\rm m}$

//// 底

 ∇

下層への取込

表層

 $(T_1 + T_0)/2$

 $(T_2^+ T_1)/2$

 $(T_{n+}T_{n-1})/2$

 $(T_0 + \alpha/\beta \cdot T_p)/2$

底

影響方向

図3 流動計算格子

 $\blacktriangleright T_0$

 T_1

► T_{n-1}

5. 結果及び考察

はじめに,モデルの再現 性を評価するために 4-1 か ら 4-3 に示すモデル,つま り装置の効果を入れない条 件での計算値と実測値との 比較を図 4,5 に示す.デ ータは装置の影響が少な いと考えられる点のもの を使用した.水温鉛直分布 に関しては 13 時,17 時と もに十分な表現ができて いるものと考える. DO 鉛

直分布に関しては計算値が実測値に沿ってはいないが、DOの時間的な挙動は示すことができている.

図 6,7 に鉛直循環モデルによる装置効果の考慮ありと考慮なしの計算値の比較を示す. 流動促進装置なしの場合は底層 において,水温,DOともに変化は少ない.しかし,装置の効果を考慮した計算を行うと底層において水温,DOの上昇が ある.そして,水温の上昇で混合が発生し徐々に全層にわたる混合が起こることが表現されている.

6. 結論

本研究では、流動促進装置の導入による水質改善効果を検証するためにモデル式を構築し、以下の知見を得た.

①一日の日成層について、水温収支モデルによって貯水池の水温鉛直分布を十分に表現でき、溶存酸素収支モデルによって 溶存酸素鉛直分布の時間的な挙動を表現できた.

② シミュレーションによれば流動促進装置による水質改善効果があるという結果が得られた.

参考文献:1) 石塚瞳ら:琵琶湖物理環境の数値計算における乱流モデルの比較検討,第19回数値流体力学シンポジウム,C2-4,2005.
2) Munk, W., H. and Anderson, E., R., "Notes on a theory of the thermocline", J. Marine Research, Vol.7, pp.276-295, 1948.
謝辞:本研究を行うにあたり株式会社共立には様々な協力をしていただき,ここに記して深く謝意を表する.