1-621

通信地下ケーブルの地震時被災確認実験について

NTT アクセスサービスシステム研究所 正会員 田中 宏司 同上 正会員 山崎泰司,正会員 馬場 進, 岡澤 毅 (㈱東電通 正会員 〇岸本 敏明

1. はじめに

NTTではこれからのブロードバンド・ユビキタスサービスの信頼性を支える重要な課題として、地震に対する信頼性の高いネットワーク構築に取り組んでいる。中でもとう道や 管路等の地下通信設備は高速広帯域ケーブルを収容保護する ことから、実際の地震による設備被害の分析に基き、設備の 改良・開発を行ってきた。

これまで通信地下ケーブルの地震による被災は、地盤急変 部や他埋設物越区間での地盤沈下などにより管路が折損離脱 し、ケーブルに急激な曲げやせん断力が作用することにより 生じるケースが多く報告されており、管路の継手部及びマン ホール(以下 MH)との接続部を可動構造とすることで、 耐震性能の向上を図っている.

2004年に発生した新潟県中越地震では、管路の折損離脱箇 所だけではなく、道路の崩壊や地盤沈下等によりMH内ダク トヘケーブルが引き込まれ、ケーブルに引張力が生じること で伝送損失増加やケーブルの切断が生じる被災事例が報告さ れた(図1).

これら地震による通信通信ケーブル被災発生のプロセス を実験的に確認したので報告する.

図1 MH内での光ケーブル被災状況

2. 光ケーブルの構造

地下に布設される光ケーブルは一般的に図2に示すような スロット構造を採用しており、光ファイバ心線はテープ状に 成形され、スロットと呼ばれる空隙内に収容される.ケーブ ル布設時の張力等はテンションメンバ(鋼線)に作用し、光 ファイバ心線自体には作用しづらい構造になっている. MH内での固定は、通常図1のように受金物に縛り紐で固 定する. クロージャ(以下クロージャ)がある場合、テンシ ョンメンバを金物で固定することで、光心線へは張力が作用 しない構成をとっている.

3. 光ケーブル被災実験

管路折損離脱部及びMH内被災状況を確認するため,図3 のような実験モデルを用いて検証実験を実施した.図左側の ケーブル固定台は、標準的なMH内を再現しており、通常の ケーブル布設形態と同様にケーブルもしくはクロージャを受 金物上へ縛り紐にて固定した.図右側の載荷部分は、地中の 管路折損離脱部を再現している.実験方法は管路折損離脱部 で管軸方向(G)・管軸直角方向(D)へ強制変位を与え、ケ ーブルに生じる張力測定,OTDRによる光ケーブルの伝送損 失測定,BOTDRによる光心線の歪み測定を行った.

OTDR は、光ファイバに光パルスを入射した時に発生する 後方散乱光の強度から、光信号の伝送損失を測定するもので ある. BOTDR は、ブリルアン散乱光のピーク周波数スペク トルがひずみに比例してシフトする現象を利用し、光ファイ バ自体のひずみを測定することが可能である.

キーワード 地下通信設備,光ファイバケーブル,新潟県中越地震,地震被害,管路,マンホール 連絡先 〒305-0805 茨城県つくば市花畑1-7-1 NTTアクセスサービスシステム研究所シビルシステムP TEL029-868-6220

3. 実験結果

実験よりクロージャの有るスパンではMH内でケーブル被 災が生じ、クロージャの無いスパンでは、管路が軸方向にの み引張られた場合MH内で、引張に加えせん断力が生じた際 に管路離脱部でケーブルが被災することが確認できた.それ ぞれの被災プロセスを以下に示す.

	MH内	離脱部
クロージャ有り	1	
クロージャ無し	2	3
表1 ケーブル被災パターン		

- ① クロージャの有るスパンでの被災プロセス
 - 1) 管路の離脱により、MH内のケーブルが引き込まれ、 ケーブル全体に張力が発生.
 - 光ファイバ全体に亘り、心線に歪みが発生.(全スロット同様の歪みが発生)
 - スタンダードクロージャ内のテンションメンバ把持 金物損傷、もしくはテンションメンバの引き抜け
 - 4) 外被及び心線に急激に引張力が作用し断線(写真1)

写真1 ケーブル断線状況

図5は、離脱量(G)と張力(T)の関係を示している. グ ラフ内の×は、光ファイバに生じる伝送損失と歪みが規定値 を超過するポイントを示している. ケーブル固定点が縛り紐 によるため、張力にばらつきがあるが、管路の離脱量が、10 cmを超えるあたりで被災となる.

- ② クロージャが無いスパンでのMH部の被災プロセス
 - 1) 管路の離脱により, MH内のケーブルが引き込まれ, ケーブル全体に張力が作用.
 - 2) ダクトに近い側の受け金物からケーブルが脱落,遠い 側の受け金物に張力が作用.
 - 3) 光ファイバ全体に亘り、心線に歪みが発生(全スロット同様の歪み発生)
 - 4) 歪みにより伝送損失増大,もしくは縛り紐食い込みに よる心線断線(写真2)

写真2 縛り紐食い込み状況

図6は離脱量(G)と張力(T)の関係を示している. 張力 は前項同様,ばらつきがあるが,離脱量が,20cmを超えるあ たりで被災となる.

- ③ クロージャが無いスパンでの管路離脱部被災プロセス
 - 1) ②の3) までは同様
 - 2) 管路離脱部の段差(G)の増大により、側圧が作用し ケーブル断面が扁平
 - 3) 張力による側圧及びケーブル引出しによる管端部とのこすれによりケーブル外被が損傷
 - 4) ケーブルスロットがひしゃげ、心線を圧迫する事で伝送損失が増大、(伝送損失超過・心線の伸び歪み超過・ 外被の孔開きは、ほぼ同時に発生)

図7は、離脱量10cm/20cm時の段差量(D)と張力(T)の 関係を示している. 縛り紐の緩みにより張力が下がるケース が生じたが、段差量が、20cmを超えるあたりで一様に被災と なる.

4.まとめ

今回の実験結果から、クロージャが有るスパンでは、離脱 量 10cm を超えると被災. クロージャの無いスパンでは離脱量 及び段差量が 20cm を超えると被災する事が確認できた.

今後は、本結果を通信設備の被災シミュレーションシステムへ組み込み、通信設備の耐震補強の推進等へ活用する予定である.