鉄道高架橋の基礎補強等による振動特性に関する一考察

東海旅客鉄道	正会員(○吉田	幸司
東海旅客鉄道	フェロー	関	雅樹
日建設計シビル	正会員	西山	誠治

24m

走行列車:

荷重列を時間差を 考慮して載荷

基礎をばねで

加振力として入力

チング

モデル化

10.9m

7m

柱下端の動的反力を算出

評価位置での応答算出

₩₩₩₩₩₩

検討対象の鉄道高架橋

1. はじめに

一般に,鉄道高架橋の基礎の健全度は,直接目視による検査が 困難なため,梁等の他部位に現れた変状や振動特性の変化¹⁾など から健全度診断する.列車走行時の振動も一つの着眼点と考えら れ,本研究では,杭基礎形式の鉄道高架橋を対象に,基礎構造の 差異や基礎補強による鉄道振動への効果等を把握することを目 的とし,列車走行時の高架橋・地盤振動解析を実施する.

2. 検討方法

対象高架橋は、図-1 に示す標準的な1層2柱式3径間ラーメン 高架橋で、杭基礎(φ350×5本、L=14m)を基本とする.検討で は表-1のように基礎構造(特異な杭基礎条件として、支持条件、 本数等を変化)の差異、補強有無(補強は地盤ばねを補強前の約 2倍とする支持層までの増し杭補強(L=14m))をパラメータとし て、列車走行時の高架橋挙動等への基礎構造の影響を解析的に評 価する.ここで、検討地盤条件は、N値50の支持層がGL-15mで、 表層はGL-8mでN=10、20に分かれる2層構造.フーチング下面 位置はGL-1.5mである.

解析は、高架橋の振動解析と地盤の振動解析に分けて実施し、 解析検討方法の概要を図-2 に示す.高架橋の振動解析では、3 次 元立体骨組モデル(スラブ:シェル要素,柱梁:beam 要素,基 礎:地盤ばね^{2),3)})により走行列車を模擬した移動加振解析(加 振力:図-3)を行い、基礎下端での動的反力を算出する.地盤振 動解析では、フーチング(ソリッド要素)・杭(対称群杭要素) と地盤を軸対称 FEM でモデル化し、高架橋振動解析で算出した 動的反力を加振力として、着目点での振動波形を算出する.この 基礎毎の振動を 8 基分加算し、高架橋全体からの振動として算出 した.なお、着目点は、柱直下位置(高架橋中心から 2.6m)、 12.5m、25.0m とする.

表-1 解析検討ケースの基礎構造・補強諸元

Case	基礎	本体基礎構造		基礎	地盤ばねの値 [kN/m]					
No.	構造	支持形式	杭本数	杭長	補強	鉛直Kv	水平Khx	水平Khy	回転Krx	回転Kry
0	基本	完全支持	5本	14m	なし	6.83E+05	9.20E+04	9.20E+04	6.63E+05	7.19E+05
1-1	杭長	中間支持	5本	7m	なし	3.97E+05	9.20E+04	9.20E+04	4.34E+05	4.67E+05
1-2	短		5本	7m	補強	9.43E+05	1.66E+05	1.66E+05	1.06E+06	1.14E+06
2-1	杭本	完全支持	4本	14m	なし	5.46E+05	7.36E+04	7.36E+04	6.39E+05	6.95E+05
2-2	数少		4本	14m	補強	1.09E+06	1.47E+05	1.47E+05	1.27E+06	1.36E+06

キーワード鉄道高架橋、振動特性、地盤振動、杭基礎、基礎補強

1 - 562

3. 解析結果

基礎下端の鉛直方向の反力の算出結果の一例を図-4 に,最大値を図-5 にそれぞれ示す.鉛直反力の最大値 が最大となる点は第2柱であり,基礎形式や補強の有無 による鉛直反力の最大値の変化は,最大で20%程度であ ることが分かる.また,基礎を補強すると,第3柱で若 干動的反力が大きくなる傾向があることがわかる.

基礎形式の違いでは,第4柱を除き,基本の基礎形式 である case0 と比べ,特異な基礎形式である case1-1 お よび case2-1 の反力は小さい.また,基礎補強の有無 (case1-1 と case1-2 の比較, case2-1 と case2-2 の比較) では,どちらの場合も,第4柱を除く全ての柱で基礎補 強により鉛直反力が大きくなっていることが分かる.こ れは,特異な基礎形式に基礎補強を施すことにより,鉛 直支持力が増し,動的反力が大きくなるためと考えられ る.

高架橋の振動解析より得られた加振力と、地盤の動的 解析より得られた伝達関数(図-6参照)を用い、高架 橋の周辺地盤の着目点における振動レベル VL の時刻暦 を図-7 に示す.12.5m、25.0m のいずれにおいても、基 本の基礎形式である case0 に対して、特異な基礎形式で ある case1-1、case2-1 では、振動レベル VL が大きくな る.また、これら特異な基礎形式について、基礎補強を 実施した場合には、補強前後(case1-1 と case1-2 の比較、 case2-1 と case2-2 の比較)では、どちらの場合も、基礎 補強により振動レベル VL が低減しており、その振動値 は、基本の基礎形式(case0)と同等以下である.

4. まとめ

高架橋の振動解析ならびに地盤振動解析により,以下 の知見を得た.

- (1) 高架橋の振動解析について、特異な基礎形式は、基本の基礎形式と比べ基礎下端の動的反力が小さい. また、特異な基礎形式に基礎補強を施すことにより、 鉛直支持力が増し動的反力が大きくなる.
- (2) 地盤の振動解析について、基本の基礎形式と比較して、特異な基礎形式は地盤振動が大きくなる。特異基礎に基礎補強を行った場合、基本の基礎形式と同等以上に地盤振動の低減効果が得られる。

参考文献

- 1) 森重龍馬:高架橋の目違い特性とくい基礎の支持力特性,構造物設計資料, No.41, pp.5-10, 1975.3.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(耐震設計), 1999.10.
- 3) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(基礎構造物·抗土圧構造物), 1997.3.

図-7 振動レベル VL の比較