活褶曲地帯の被害地震による地盤変動の抽出と防災への適用

東京大学大学院	学生会員	藤田	智弘
東京大学大学院	正会員	小長井	一男
飛島建設(土木学会技術推進機構)	正会員	池田	隆明
建設技術研究所(土木学会技術推進機構)	正会員	高津	茂樹

1.はじめに

2004 年の中越地震の直撃を受けた東山山地は, 堆積 軟岩の活褶曲で特徴付けられ,地すべりの多発地帯と して知られている.この地震では中山間地に航空写真 判読で 4,400 を超える斜面崩壊が確認され多くの被害 をもたらした.一方で土被り 60mにも達する新幹線魚 沼トンネルの被害は浅い地滑りの影響とは考えられず, 深層での地盤変形が原因である可能性を物語っている.

本論文では中越地震による地盤変形のうち,斜面崩 壊成分を除去して第3紀堆積岩中に生じた変形の抽出 と,それが被害に与えた影響の検討を行う.

2.地盤変動の抽出方法

地形変動を精密に計測しえる手法に合成開口レーダ ーによる計測(InSAR:Interferometric Synthetic Aperture Radar)がある.中越地域についても解析が試みられた が,植生及び斜面崩壊の影響を受け,解析が不可能で あった.このため異なる時期で航空レーザー計測(Laser Imaging Detection and Ranging:LIDAR)による2mメッシ ュのディジタル標高モデル(以下 DEM)を求め,これ らを比較し地形変動を確認した.地震前は航空レーザ ー計測が行われておらず,1975年-1976年の航空写真を 図化し,これらを元に DEM を作成した.なお解析対象 地域は DEM の重複する区域,および被害状況を勘案し, 図1に示す東西 11km、南北7.5kmのエリアとした.

図1 解析対象地域

得られた地震前(1975-1976)後(2004年10月24日) の DEM の差分をとったものを図2に示す.標高が上昇 した部分が暖色で,低下した部分が寒色で表現されて いる.

図 2 地震前後の DEM の差分図

しかし,ここで表現された標高変化は純然な土粒子 の移動を示すものではない(図3).このため土粒子kの 動き(Lagrangian 座標での移動量 $\{\Delta x_k \quad \Delta y_k \quad \Delta z_k\}$) を以下の手順で求めることにする.

 $\Delta z_i la \{\Delta x_k \quad \Delta y_k \quad \Delta z_k\}$ により以下の様に表現できる. $\Delta z_i = \{t_{x,i} - t_{y,i} \mid 1\} \cdot \{\Delta x_k \quad \Delta y_k \quad \Delta z_k\}^T$ (1) さらに隣接する3点で $\{\Delta x_k \quad \Delta y_k \quad \Delta z_k\}$ は同値と仮定 することで,

$$\begin{cases} \Delta z_{i1} \\ \Delta z_{i2} \\ \Delta z_{i3} \end{cases} = \begin{bmatrix} -t_{x,i1} & -t_{y,i1} & 1 \\ -t_{x,i2} & -t_{y,i2} & 1 \\ -t_{x,i3} & -t_{y,i3} & 1 \end{bmatrix} \begin{bmatrix} \Delta x_k \\ \Delta y_k \\ \Delta z_k \end{bmatrix} = T \cdot \begin{bmatrix} \Delta x_k \\ \Delta y_k \\ \Delta z_k \end{bmatrix}$$
(2)

を得,この連立方程式を対象領域内の全ての点について解くことで,領域内の土粒子の移動量を求めることができる.

次に斜面崩壊成分等を削除する為以下の条件を課した.

条件 1:
$$|\Delta z_i| < |t_{x,i}| \Delta x_{limit} + |t_{y,i}| \Delta y_{limit} + \Delta z_{limit}$$
 (3)

ここに $\Delta x_{lim}, \Delta y_{lim}, \Delta z_{lim}$ は各方向の許容変位成分であ り,それぞれ 1.5m,1.5m,2.0m. $t_{x,i}$, $t_{y,i}$ は地震前の Euler 格子点 i 上の方向正接

キーワード 活褶曲,地盤内部の変形,ディジタル標高モデル,地下構造物

連絡先

〒153-8505 東京都目黒区駒場 4-6-1

東京大学 生産技術研究所 B 棟 Bw303 TEL03-5452-6149

条件 2: { $t(a)_{x,i}$, $t(a)_{y,i} < t(b, max)_{x,i}$, $t(b, max)_{y,i}$ } and { $t(a)_{x,i}$, $t(a)_{y,i} > t(b, min)_{x,i}$, $t(b, min)_{y,i}$ } (4) ここに $t(a)_{x,i}$, $t(a)_{y,i}$ は地震後の Euler 格子点 i 上の方 向正接, $t(b, max)_{x,i}$, $t(b, max)_{y,i}$ { $t(b, min)_{x,i}$, $t(b, min)_{y,i}$ }は地震前の近接 8 格子点の最大値{最小値 }.

本手法では異なる方法で得られた DEM の差をとる ことから系統的誤差がバイアスとして紛れ込む可能性 がある.このため適切な解析措置がなされ,必要な精 度が保障されているか確認する意味で対象地域に散在 する9つの三角点の標高変動 $\Delta z_{k,tri}$ と,本手法で得られ た標高変動 $\Delta z_{k,DEM}$ を比較し, $\Delta z_{k,DEM} = b + \Delta z_{k,tri}$ を もって回帰分析を行った(図4).その結果,b = -0.033m, 標準偏差 $\sigma = 0.34$ mを得た.この b = -0.033mは $\Delta z_{k,tri}$ の 変動幅を考えると極めて小さな値であり,本手法によ り全体的な地盤変動を実用上十分な精度で議論し得る 結果が得られたことを示している.

3.地盤変動の解析結果と地震被害の関係

図 5 に地盤変動の東西方向成分を示す.最も顕著な 東向きの変位の帯が梶金向斜に沿って現れている.こ の向斜軸の上流部では,魚野川はほぼ真っ直ぐに流下 しているが,この向斜軸に突き当たる辺りで大きく流 路を変え狭窄部を形成している.この辺りで主要幹線 被害が集中し,その中でやや深い部分のものに,JR上 越線の和南津トンネル,新幹線の魚沼トンネルがある.

図 6 は南北方向成分を示したものである.東西の変 位に比べればかなり小さくこれはこのあたりで起こる 地震の震源解とほぼ整合的である.

上下方向成分で顕著なのは南西部と北部に広域な隆 起が認められることである(図7).特に南西部の隆起 は信濃川河川事務所が管轄する信濃川,魚野川沿いの 標高変動とも整合している.

地震翌年の6月28日の大雨で,魚野川狭窄部~堀ノ 内で水田の冠水被害が発生した.隆起による影響につ いては現在解析中である.

図7 上下方向変位成分と被害状況

4.まとめ

活褶曲の顕著な東山山地を中心に異なる時期のディ ジタル標高モデルから中越地震による実際の土の動き を抽出した.さらに地表面の社会基盤施設被害に最も 直接的に関わる残層の斜面崩壊と深部のトンネル被害 に関わる地盤内部の変形の分離を試みた.抽出された 地盤内部の動きと被害の位置関係には何らかの相関性 が見られた.

地震後の地盤変形については新たな DEM を準備し 解析中である.

【参考文献】

Taku Ozawa,Sou Nishimura,Yutaka Wada,Hiroshi Okura(2005):Coseismic deformation of the Mid Niigata prefecture Earthquake in 2004 detected by RADARSAT/InSAR,Earth Planets Space,57,423-428,2005