個別要素法によるコンクリート飛散片シミュレーションの基礎的検討

防衛大学校	学生会員	原木	大輔
防衛大学校	正会員	香月	智

1.緒 言

コンクリート構造物が衝撃力を受ける場合,構造破 壊に至る前段階として,表面破壊,裏面剥離,衝突物 の貫入・貫通などのコンクリート片の飛散現象をとも なう破壊形態が生じる.このような局所的な破壊は, 構造全体の安全性に直接影響することはないが,破片 によって構造物近辺,もしくは内部にある設備や人命 の安全性を脅かす二次被害の可能性もある.このよう な飛散片による二次被害が問題となる場合には,その 挙動を解析する手法が必要となる.そこで本研究は, 個別要素法による高速載荷を受けるコンクリート円柱 供試体の飛散片シミュレーションを試み,飛散片の大 きさや速度について実験結果と比較検討を行ったもの である.

2.解析手法

本解析では,コンクリートを細かい球形要素の集合 体と考え,三次元における運動方程式を中心差分法を 用いて解く.ただし,速度項は後進差分とした.

要素間の接触力は図-1 に示す法線方向ばねと接線方 向ばね(合力方向)およびそれぞれに並列されたダッシ ュポッドによって表す.法線方向のばねは図-2 に示す ように,引張側は引張強度に達するまでは線形弾性とし,その後は引張破壊エネルギーG_rによって軟化勾配を変化させる 1/4 モデルに従ってばね力を低減させた. また,圧縮側にはコンクリートの非線形性を表現するために,任意の圧縮応力限界に漸近するポポビクス式による関係を与えた.接線方向ばねは,図-3 に示すような線形モデルとし,モール・クーロンの限界状態に達すると塑性的に滑るものとした.ただし,塑性滑り量に比例して低下するものとした.

I

解析モデルは図-4 に示すように,高さ 20cm,直径 10cm の円柱供試体を,球形要素 2083 個を用いてモデ ル化した.また,解析モデルの上下を平面要素ではさ み,上側の平面を高速載荷(2.0m/s)の条件で時間制御さ れる変位を与えた.

本研究では, 圧縮強度 $30N/mm^2 O \exists 20 0 - b (dd)$ 体を対象として,解析パラメータを決定した¹⁾.特に, 本解析手法は,飛散片の大きさや速度は引張側の軟化 特性に大きく影響を受けることから,引張側の構成則 パラメータを決定するために,直接引張実験を実施し た.その結果,引張破壊エネルギー G_F および引張強度 f_{nv} にばらつきがあり,引張破壊エネルギーと引張強度

キーワード 3次元個別要素法,コンクリート飛散片,引張軟化特性 連絡先 〒239-8686 横須賀市走水1-10-20 防衛大学校建設環境工学科 TEL:046-841-3810 E-mail:g45076@nda.ac.jp

の平均 G_F , f_{ny} , sよび,標準偏差 σ_{G_F} , $\sigma_{f_{ny}}$ を用いて, $G_F \pm \sigma_{G_F}$, $f_{ny} \pm \sigma_{f_{ny}}$ の組み合わせ 5 通りの解析を行うことにより引張特性のばらつきを考慮することとした.

3.解析結果

引張破壊エネルギー G_F および引張強度 f_{ny} の組み合わせ 5 通りについて,荷重~変形関係を実験結果と比較して図-5 に示す.いずれの組み合わせにおいても,初期勾配,最大荷重および軟化勾配の最大荷重の 2/3の位置までは,実験結果を良好にシミュレートできている.それ以降は,実験結果と比べて急勾配となる. その勾配は引張破壊エネルギー G_F および引張強度 f_{ny} の組み合わせによって異なり, $\overline{G_F} - \sigma_{G_F}$, $\overline{f_{ny}} - \sigma_{f_{ny}}$ の組み合わせのとき,勾配がもっとも急になっている.

図-6には,引張破壊エネルギーG_Fの平均および引張 強度f_mの平均の組み合わせのときの,載荷後の要素の 挙動を実験結果と比較した.解析結果において,載荷 後,要素が塊を形成して移動しており,実験結果の飛 散片を表現できている.

引張破壊エネルギー G_F と引張強度 f_m の全組み合わ せから得られた累計の飛散片の速度分布を図-7 に示す. 実験では最頻値が2m/sで最大速度は10m/sまで達して いるのに対して,解析では最頻値が2m/sであるが最大 速度は4m/sにしかならない.

図-8 に飛散片の質量と速度の関係を実験結果と合わ せて示す.実験は大きなばらつきがあるものの,概し て重い破片の速度は小さく,軽いものの速度が大きく なるのに対して,解析は質量の大きさにかかわらず, 平均 2m/s±1m/s でばらついている.

図-9 にコンクリート供試体の吸収エネルギーと飛散 片の運動エネルギーの関係を示す.実験結果と比較し て,吸収エネルギーは全体的に小さくなっているが, 飛散片の有する運動エネルギーの分布の範囲は,おお むね一致している.また,引張破壊エネルギー*G_F*の平 均および引張強度 *f_m*の平均の組み合わせのとき,吸収 エネルギーの運動エネルギーに対する変換率は 2.0% であり,実験結果の平均のエネルギー変換率とほぼ一 致していることがわかる.

4.結 言

本研究は,個別要素法による飛散片シミュレーショ ンを試み,実験結果の飛散片の大きさや速度について 比較検討を行った.その結果,直接引張実験により得 られた引張側の構成則パラメータのばらつきを考慮す ることにより,高速載荷を受けるコンクリート円柱供 試体の飛散現象をシミュレートできる可能性を示した. 参考文献

1) 原木大輔,香月智,藤掛一典:個別要素法のコン クリート破片飛散シミュレーションへの応用,応 用力学論文集,Vol.9,pp.667-678,2006.8

図-6 破壊形態($\overline{G_F}$, $\overline{f_{ny}}$)

図-9 運動エネルギー~吸収エネルギー関係