アラミドロープを用いた RC 橋脚の段落し部じん性補強に関する検討

独立行政法人土木研究所寒地土木研究所	前 正会員	三田村	打 浩
独立行政法人土木研究所寒地土木研究所	前 正会員	石川	博之
長岡技術科学大学	正会員	下村	匠
長岡技術科学大学	フェロー会員	丸山	久一

主鉄筋段落しを有するRC橋脚は、曲げ損傷した 後,せん断破壊に移行する脆性的な破壊形態を示 す場合があることが明らかとなっている.既設RC 橋脚の耐震補強手法として,連続繊維を補強材料 として実構造物へ適用もされているが、その多く は連続繊維をエポキシ系樹脂で含浸して使用す るものである.

本研究で用いるアラミドロープは、アラミド繊 維をより線状に成型加工したもので,既に実験研 究が行われいる¹⁾.実験では樹脂含浸せずにコン クリートに巻付けて耐震補強として用いること を想定しており、段落しを有する既設RC橋脚に対 してアラミドロープを用いた場合の、より合理的 なじん性補強手法を確立することを目的として, 正負交番載荷実験を実施し、既設RC橋脚の補強効 果について実験検証を行った.

2.実験概要

2.1 実験供試体

試験体形状は、躯体高2.0m、断面寸法0.60×0.60m の正方形断面であり、橋脚基部より0.75mの高さに 軸方向鉄筋段落しを設けている.(図2.1)

なお,本実験では段落し部のじん性補強効果を

検証するため.無補強の場合に段落し部で曲げ破 壊からせん断破壊移行型の破壊形態を示すよう に設計を行った.なお、実験に用いたコンクリート の設計基準強度はf'_{ck}=24Mpa.また,鉄筋はSD345 材を用い,軸方向鉄筋はD19,帯鉄筋はD10である。

2.2 実験方法

実験装置の概要図を図2.2に示す.実験は上部工 死荷重を考慮した鉛直荷重120kNを軸力として一 定に保持した状態で、水平方向ジャッキにより交 番載荷を行うことで実施した.繰り返し載荷回数 は、各変位振幅毎に3回、載荷終了は、載荷荷重が初 回降伏荷重を下回った時点とした.

2.3 検討ケース

図2.3に供試体補強概要図を、表2.1に検討ケース を示す.実験に用いた供試体はCASE-1が無補強供 試体. CASE-2~CASE-4がアラミドロープを柱基 部より1.60mの範囲を25mm間隔で巻つけた供試 体である.CASE-2供試体は、巻つけ範囲を全面エ ポキシ樹脂で含浸したもので、CASE-3供試体は上 下端部のみを,エポキシ樹脂で含浸したものであ る.CASE-4供試体はひび割れ開口部へ、アラミド ロープが食込む事を防止する目的で断面の四隅 にL型鋼を配置したもので、鉛直方向に75mmの隅

キーワード アラミドロープ じん性補強 正負交番載荷実験 連絡先 〒062-8602 札幌市豊平区平岸1条3丁目(独)土木研究所寒地土木研究所

011-841-1698

にL型鋼を配置したもので,鉛直方向に75mmの間 隔で切断したものをエポキシ樹脂で躯体に接着 している.

	衣 2.1	快討クー	· 人	
検討	検討ケース		補強量	
CASE-1	無補強	-	-	
CASE-2	アラミド	あり	44 50 (2)	
CASE-3	ロープ	た し、	11.53(mm ⁻)	
CASE-4	補強	/a.U	CiC25(IIIII)	

表 2.1 検討ケー

3.実験結果

表 3.1 に,実験結果の一覧を,図 3.1 には各供試体の載荷 1 ループ目における荷重変位関係の包 絡線を示す.

表中の δ_{y} ,Py は降伏時, δ_{Pmax} ,P_{max} は最大荷重時の 載荷点変位と載荷荷重を示す. δ_{u} は終局変位を示 す.表 3.1 より補強を施した CASE-2 ~ CASE-4 供 試体の最大荷重時の変位 δ_{Pmax} は,無補強の CASE-1 供試体の 1.5 ~ 1.7 倍程度となっている.

終局変位 δ_u は, CASE-1 供試体の 1.4~1.7 倍程 度,降伏変位 δ_y は,CASE-2~CASE-4 供試体 は,CASE-1 供試体の 1.2 倍程度と大きくなる結果 となった.終局変位,降伏変位ともに補強供試体の 方が大きくなる結果となり,終局変位の増加が降 伏変位の増加に比べて大きく,橋脚の塑性率 δ_u/δ_y が向上し,補強効果が認められた.

また,樹脂含浸の有無による顕著な差異は認め られなかったが,L 型鋼を配置した CASE-4 供試 体は CASE-2,CASE-3 供試体と比較して,塑性率 δ_u/δ_y が 1.1 倍程度,履歴吸収エネルギーは 1.1 倍 程度となり補強効果の向上がみられた.

写真 1~4 に各供試体の実験終了時の破壊性状 を示す.写真 1 では曲げせん断破壊により大きく 斜め方向に,被りコンクリートの剥落が発生して いるが,補強供試体である写真 2~写真 4 ではそ の進展が抑制されている.

ha:	試ケーフ		変位(mm))	荷重	i(kN)	塑性率	
仮割ケース		у	P _{max}	u	Py	P _{max}	u/y	
	CASE-1	11	32	63	128	175	5.73	
	CASE-2	13	49	90	131	179	6.92	
	CASE-3	13	50	90	131	175	6.92	
	CASE-4	14	56	109	140	188	7.79	
LL	/	1.18	1.53	1.43	1.02	1.02	1.21	
較	/	1.18	1.56	1.43	1.02	1.00	1.21	
	/	1.27	1.75	1.73	1.09	1.07	1.36	

表 3.1 実験結果一覧

4.**まとめ**^{与具;}

破壊形態についてもアラミドロープを巻つけ てることで,せん断ひび割れの進展を抑制し,曲 げせん断破壊移行型から,曲げ破壊型の破壊形 態となった.

落を防止し、変形性能が向上した.

四隅にL型鋼を配置することでひび割れ開口部 への補強材料の食い込みを防止し,ロープのゆ るみが抑制され拘束効果が向上した.(写真5,6)

参考文献

 1)松本章裕,Nguyen Hung Phong,下村 匠,関島謙 蔵:既設コンクリート部材の補強における連 続繊維ロープの適用,コンクリート工学年次論 文集, Vol.28, No.2, pp.1423-1428, 2006.7