並列円柱まわりの流れの空力特性に関する数値流体解析

○ 中央大学大学院 学生員 佐藤 亮 中央大学 正会員 平野

中央大学 正会員 佐藤 尚次

廣和

1. はじめに

並列構造物間における空力振動に関し、互いの間の流れの干渉 により、下流側構造物が複雑な振動現象を起こすことが知られて いる。その一例として、上流側にある構造物の後流などの影響に より、下流側の構造物がウェークギャロッピング現象と呼ばれる 振動現象を起こすことがある。この特性として文献かなどから、 上流側構造物からの後流が、下流側円柱を包み込むようにして流 れる outer accelerated flow、また、上流側円柱からの後流が、下 流側円柱の内側にも流れ込む gap flow がある。そしてこの流れ の状態の遷移を、流れの switching と呼んでいる。また、この流 れの switching の発現が、揚力の急激な変動に影響し、振動現象 を起こすとされている。

本研究は、並列構造物として、斜長橋における並列ケーブルを 取り上げ、この並列ケーブルまわりの流れで発生するウェークギ ャロッピング現象などの振動現象に着目し、有限要素法に基づく 数値流体解析を用いて、これらの振動現象の空力特性を把握する ことを目的とする。また、既存の風洞実験結果¹⁾との比較により、 本解析手法における現象の再現性の妥当性に関して検討を行う。

2. 解析諸元

本研究では、並列ケーブルを2次元の近接する並列円柱構造物 としてモデル化する。図-1に示すように円柱間隔S、迎角 α をパ ラメータとして、円柱間隔 3D において、迎角 α を-10°~10° まで1°毎に変化させて、並列円柱が静止した状態での2次元静 的解析を行う。

2.1 支配方程式

支配方程式は、次に示す非王縮性Navier-Stokes 方程式を用いる。

 $\rho(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) - \nabla \cdot \boldsymbol{\sigma}(p, \mathbf{u}) = 0 \quad \text{in } \Omega$ $\nabla \cdot \mathbf{u} = 0 \qquad \text{in } \Omega$

ここで、 ρ は密度、 \mathbf{u} は流速、 \mathbf{t} は時間、pは圧力、 Ω は解析領域を示す。

2.2 有限要素法による離散化

離散化手法として、丸岡ら²が提案している IBTD/FS 有限要素法を用いる。本解析手法では、運動方程式はIBTD 法、連続式

はFS法により離散化され、流速と圧力は分離して求まる。代数 方程式の解決にはSCG法を用いる。

2.3 乱流モデル

乱流モデルを適用すると、非王縮性Navier-Stokes 方程式は時間および空間フィルタ操作を施された変数で表され、応力テンソルの(p,u)は次式で表される。

 $\sigma(p,\mathbf{u}) = -p'\mathbf{I} + 2(\mu + \rho v_{\tau})\varepsilon(\mathbf{u}), p' = p + \frac{2}{3} \cdot \rho k_{\tau}$ ここで v_t は渦動粘性係数であり、これは乱流モデルにより求ま る。本研究においては、この v_t を丸岡ら³が用いている RANS のSA モデルにより算出する。また、なは乱流エネルギーであり、 圧力項に換算圧力 p'として なを含めて扱うことができるため陽 には表れない。

2.4 解析領域及び境界条件

解析領域は、円柱直径をDとした場合、円柱前方と側方を6.5D、 円柱後方を20.0Dとしている。また、境界条件は流入境界で一様 流速1.0、側面でslip、円柱表面でnon-slipとしている。

2.5 解析条件

解析条件を表-1 に示す。メッシュ分割は、断面近傍で節点を集 中的に配置している。総節点数は74285、総要素数は146480 であ る。Re 数は風洞実験 いこおける条件と同一の3.0×104 とする。

3. 解析結果及び考察

解析結果は、下流側円柱の平均抗力係数、平均揚力係数を風洞 実験値と比較したものを図-2 に示す。平均抗力係数は、2 次元解 析特有の円柱軸方向の 3 次元的な流れを表現できないことによ り、解析結果が実験値を過大評価しているが、定性的に大きな差 はみられない。平均揚力係数は、風洞実験同様、迎角の増加に伴 い、その値も上昇し、ある迎角においてピークを示し、それ以降 減少している。風洞実験は、迎角 7°でピークを示しているのに対 し、解析結果は迎角 5°でピークを示している。ただし、風洞実験 は、この迎角 7°から、迎角 8°の間において、流れの switching が起こるとされている。そこで、揚力係数がピークを示す迎角 5° 及びその前後の迎角 4°,6°に焦点を絞る。図-3 に揚力変動1 周期 における平均流線図を示す。ここで、迎角 4°は、上流側円柱から

キーワード: 並列円柱、ウェークギャロッピング、定常空気力係数、数値流体解析 連絡先: 〒112-8551 東京都文京区春日 1-13-27 tel. 03-3817-1816 fax. 03-3817-1803 の後流が、下流則円柱を包み込むようにして流れている。これに 対して迎角5°は、上流則円柱からの後流が、円柱間の内側に流れ 込んでいる。さらに、迎角6°は、円柱間への流れ込みがより顕著 にあらわれており、明らかなgap flow をあらわしている。よっ て、本解析結果から、揚力係数のピークから負勾配を示す間に、 流れの switching が生じたことがわかる。これが、下流則円柱に 作用する空気力に変化を生じさせたと考えられる。

図-4 に同迎角における揚力の最大・最小時の瞬間圧力コンター 図を示す。迎角4°は、両者の下流則円柱上下面での圧力分布の形 状の明確な差はみられない。しかし迎角5°になると、gap flow の 発現により、下流側円柱まわりの流れに変化が生じ、その結果下 流側円柱表面における圧力分布の形状に、揚力最大、最小時にお いて明確な差があらわれている。この流れの switching により生 じた圧力差が、揚力の急激な変化の要因となり、下流則円柱の振 動現象を引き起こすと考えられる。迎角6°においても、迎角5° と同様な傾向を示している。

図-5 に下流側円柱表面における平均圧力係数分布図を示す。円 柱表面 330°位置において、迎角毎にその形状に違いがみられる。 迎角 6°は、上流側円柱からの後流渦の付着が見られ、ここから流 れが円柱上下面へと伝わると考えられる。なお、迎角 5°において、 上流側円柱からの後流渦の付着の様子が迎角 6°のように明確に あらわれなかったのは、流れの switching の発現における境界付 近であることによると考えられる。

4. おわりに

本報では、ウェークギャロッピング現象に着目し、この空力特 性を把握することを目的とし、有限要素法に基づく2次元静的数 値流体解析行った。風洞実験同様、定常空気力係数において、平 均揚力係数が正の勾配から負の勾配を示す間に、流れの switching が生じていることが確認でき、流れのメカニズムを把 握することができた。しかし、空気力の定量的な評価、また、揚 力がピークを示す迎角が一致しなかったことより、実現象の再現 は2次元解析では難しいと判断する。今後、円柱中心間距離のパ ラメータを変化させて同様な検討を行うとともに、流れの switching の発現がどのように振動現象を引き起こす要因となっ ているかを動的解析を用いて検討を行う予定である。

謝辞:本研究の実施にあたり、八戸高等専門学校講師の 丸岡晃氏に協力を得た。ここに感謝の意を表す。 <参考文献>

- 建設省土木研究所:斜張橋並列ケーブル耐風制振に関する共同研究 報告書(その1),(その2),(その3), 1993, 1994, 1995
- 丸岡他: 広範囲な Reynolds 数域での円柱まわりの2次元及び3次 元数値流体解析,土木学会論文集 No. 591, 1998.4

図-5 ア流側円柱表面における平均圧力係数分布図 及び円柱表面 330°位置における拡大図

3) 丸岡他: 数値流体解析による断面辺長比4の矩形断面の空力応答 特性に関する検討,応用力学論文集 Vol.8, 2005