Bluff Body の空力特性に与えるカルマン渦の影響及びギャロッピングとの関係について

京都大学大学院	学生員	○中瀬	友之	京都大学大学院 フェロー 松本 勝
京都大学大学院	正会員	八木	知己	アドバンスソフト株式会社 堀 高太郎
日本航空株式会社	£	川島	由紀	京都大学大学院 学生員 橋本 三智雄

1. 序論

構造基本断面は非流線型断面であるため流れが剥離し、渦を放出する.このように断面背後に放出される渦、 特にカルマン渦の影響により物体は様々な空力特性と挙動を示す.既往の研究で Matsumoto ら¹⁾ は、斜張橋ケー ブルにおいてカルマン渦放出が抑制された際にギャロッピングに対して不安定になることを指摘している.一方、 岡島ら²⁾ は流れに対し並列に2つの矩形断面を配置した並列2角柱において、対称な断面であっても定常揚力が 発生し非対称流れが生じうることを指摘している.本研究では、カルマン渦抑制と岡島らの指摘する非対称流れ に何らかの関係性があると考え、並列2角柱および円柱に対称な微小突起をつけた断面(以下、対称突起付き円 柱とよぶ)を対象に、非対称流れを伴う対称断面まわりの流れ場におけるカルマン渦の影響を考察するとともに、 カルマン渦とギャロッピング不安定性との関係を明らかにしていく.

2. 並列2角柱の空力特性

Fig.1 に今回用いた並列 2 角柱断面を示す.本研究では単体角柱は *B/D*=1.28 となる ような模型を用いた.実験により得られた,静的空気力特性(*a*=0[deg.])を Fig.2 に示 す.まず *St* 数に着目する.ここでは *St* の算出に用いる代表長を *D* および 2*D*+*S* とした. 図に示すように *S/D*=0.625 と *S/D*=0.75 の間で適当な代表長が 2*D*+*S* から *D* に変化してい ることから,この付近の角柱間隔を境にしてカルマン渦放出特性が変化していると考え

られる. つまり、S/D=0.125~0.625の間では2角柱をひとつの一体構造と見たよ うな流れ場が全体の流れ場を支配しているのに対し、S/D=0.75~2.0の間では単 体角柱(B/D=1.28) それぞれの流れ場が全体の流れ場を支配していると考えら れる. 次に変動揚力係数 C_l を見ると, S/D=1.0 以下では $C_l = 0$ となっている ことから、カルマン渦放出が抑制されていると考えられる.またこのとき、揚 力係数 C_Lが有意な値をとっていることから,非対称流れが生じていることが確 認できる.これらのことから、カルマン渦が流れ場を時間平均的に対称にして いると考えられる. また抗力係数 Cnを見ると, S/D=1.0 以下では B/D=B/(2D+S) と見たとき, Matsumoto ら³⁾の研究におけるスプリッタープレート(S.P.)有りの 各種矩形断面と傾向が似ていることから,角柱間隔Sが狭いとき(S/D=1.0以下) には、角柱間からの高速なスリット流(Gap Flow)が S.P.と同様にカルマン渦 を抑制する役割をしていると考えられる. ここで、カルマン渦が抑制されてい ると考えられる S/D=0.5 の揚力係数の迎角変化特性を見てみる(Fig.3). a=0[deg.] で不連続になっているのは、定常揚力が発生していることを表す. このような 場合, $\alpha=0$ [deg.]まわりの dC₁/dαは片側極限としては dC₁/dα>0 であるが, $dC_l/d\alpha$ =-∞と見ることもできる. これについては、たわみ 1 自由度自由振動実 験においてギャロッピングが発現しなかったことから、片側極限としての dC₁/dαによる評価が断面まわりの流れ場の空力特性を正しく表現しているとい える. Fig.2 の揚力係数勾配 $dC_l/d\alpha$ はこのように評価したものである. S/D=0.875

キーワード カルマン渦,剥離剪断層,非対称流,ギャロッピング 連絡先 〒615-8246 京都市西京区京都大学桂 京都大学大学院工学研究科社会基盤工学専攻 TEL 075-383-3167

С

以下では dC_L/daが正となりギャロッピングに対して安定で あることが分かる.この理由としては,迎角aのときのカル マン渦放出が抑制された際の流れである Fundamental Bluff Body Flow (FBBF)が内部循環流の発生や圧力回復などが起こ らないほど十分に断面側面から離れているためと考えられる. また,Gap Flow の流速が衰え,カルマン渦が十分に抑制され

ていないと考えられる *S*/*D*=1.0 以上の断面においては角柱間隔 *S* によって 角柱間を流れる剥離せん断層の干渉具合が異なることよりギャロッピング 不安定性が変化すると考えられる (Fig.4). これらより,並列 2 角柱では *S*/*D*=1.0 以下においてはカルマン渦が抑制され,このとき,断面がギャロ ッピングに対して安定であるような FBBF が現われると考えられる.

3. 対称突起付き円柱の空力特性

本研究で用いた対称突起付き円柱を Fig.5 に示す.また円柱のよどみ点 から突起中心までの角度を *Q*[deg.] とし,図中の*θ*=0[deg.]は突起のない通常 の円柱を表すものとする.Fig.6 に静的空気力特性 (*α*=0[deg.])を示す.*St* は*θ*=50[deg.]付近で不連続となり,カルマン渦放出特性が変化していると考 えられる.また揚力係数 *C*_Lにおいては,*θ*=48~52[deg.]付近で有意な定常揚 力が確認される.並列 2 角柱での結果を考慮すると,対称突起がこの位置 のときカルマン渦が抑制され,FBBF が流れ場を支配していると考えられ る.また最も顕著に定常揚力が発生している *θ*=50[deg.]をピークとして *θ*=48~58[deg.]の範囲で d*C*_L/d*α*が負となりギャロッピングに対して不安定 であることが分かる.またこの範囲でギャロッピングが発現することをた わみ 1 自由度自由振動実験により確認している(Fig.7). つまり,対称突起 付き円柱では*θ*=50[deg.]付近においてカルマン渦が抑制され,このとき,断 面がギャロッピングに対して不安定であるような FBBF が現われると考え られる.

4. 結論

カルマン渦は断面周りの流れを対称化する役割を持つと考えられる.また,一般にカルマン渦を抑制することにより,断面はギャロッピングに対してより不安定になると考えられるが,本実験での並列2角柱断面のように安定となる断面も存在する.これは剥離せん断層と断面側面との位置関係によるものと考えられるが,断面まわりの詳細な流れ場については今後, 圧力試験や可視化実験等による検討が必要である. 21/1mml 21/10

参考文献

1) M. Matsumoto et al.: Effect of axial flow and Karman vortex interference on dry-state galloping of stay-cables, Proceedings of the Sixth International Symposium on Cable Dynamics, 2005 2) 岡島厚 他:一様流中に置かれた並列 2 構造物に働く流 体力, 第 8 回風工学シンポジウム論文集, pp.285-290, 1984 3) M. Matsumoto et al.: Karman vortex effect on the aerodynamic forces to rectangular cylinders, Proceedings of PVP2006-ICPVT-11, 2006 ASME Pressure Vessels and Piping Dvision Conference

Down Lift

