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1. Introduction 

In this study AR and ARMA model parameters calculation method has been addressed using canonical form realization 

based on Hankel matrix. This research is verification for effectiveness of the proposed method since canonical 

realization method is simple and faster than the previous method for calculation of parameters. Estimation accuracy of 

the method was examined by comparison to FEM method. In this study attention has been paid to accuracy of 

frequency, damping and mode shapes. 

2. Studied Model  

Langer bridge is selected as the object model bridge, and 

Fig. 1 shows its general view. Table 1 shows the model 

bridge element characteristics. Table 2 shows the natural 

frequency result of the model bridge from 1st to 8th order 

by FEM method. Fig. 2 shows the vibration modes from 

1st to 8th order which obtained by FEM method. 

3. Methodology  

Discretized representation of motion equation as 

following 

)()()1( kkk fBxAx +=+                 (1a)                                                           

)()( kk xCy =                          (1b) 
Where CCBAIBA AA =−== − 　　　　　　 ,)(, 1hh ee . 

State space and discretized representation of motion 

equation in terms of generalized observational matrix 

yields to transformation of motion equation into 

multidimensional ARMA model. A multi-dimensional 

ARMA model can represent by a finite 

multi-dimensional AR model, and following equation 

can show a multi-dimensional AR model. 
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Moreover, if the observed value of m  point as a m  

dimension vector, then variance and covariance matrices 

of the observed values can be shown as following 

equation. 
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Fig. 1 General view of Langer Bridge 

 
Units
L (m)
H(m)

D (t/m^3)
E (t/m^2)

Ton
Ton

A1 (m^2)
A2 (m^2)
A3 (m^2)
A4 (m^2)

 Characteristics Numerical value
Effective span 58.995
Model Height 9.36

Density of steel 7.85
Young’s Modulus 2.1*10^7

Total mass of the model 19.3
Total weight of model 189.17

Cross-section area

0.0224
0.0123
0.0137

0.006015

Table 1. Model bridge characteristics

    

 
1st 1.749
2nd 2.893
3rd 5.69
4th 7.375
5th 9.416
6th 11.179
7th 14.236
8th 15.615

Table 2. Natural
frequency (Hz)
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Fig. 2 Mode shapes 

 

 
Fig. 3 Frequency (Hz) 
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The following relation can be derived from 

observerability matrix. 
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Right – multiplying  qQ  to both sides of eq. 

(4) yields.  
          

q
s

pq
s

p QAPAQAP ˆ 1 =+       (5)  

Eq. (5) in condensed form as following   

)1(ˆ)( −= ss HAH              (6) 

Where H(s) and H(s-1) are Hankel matrix. In 

the detailed form the eq. (6) can be shown as 

follows 
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The system matrix A  can be obtained by two 
methods. First method to solve eq. (7) i.e. 

Â becomes similar form of A . 
The second method is to calculate the system 

matrix Â  from extracted lower blocks of 
eq.(7) which are similar to  

[ ]pGGGG −−−= L21
 in the eq.(4), and 

becomes similar to the Yule-Walker equation, 

Which is as set of linear equations relating the 

parameters of an AR model with the auto correlation sequence in the matrix form. 

4. Results  

Graphical representation of frequencies and modal damping are shown in Fig. 3 and Fig. 4 respectively. Fig. 5 shows 

modes of vibration of estimated data and analysis result for all observed points. Table 3 shows the dynamic 

characteristics estimation result for mean value, percentage of error, standard deviation and coefficient of variation for 

frequency and modal damping. The percentage of error is low for frequency as well as for modal damping. Considering, 

the accuracy, the obtained data shows; the values are close for eigenvalue analysis and estimated dynamic 

characteristics where the margin of discrepancy is small for frequency as well as for modal damping. The percentage of 

error for frequency is the lowest for the 5th mode and the highest is for the 1st mode. The percentage of error for the 

damping has the lowest value for the 3rd, 6th and 8th modes and the 1st has the highest value.  

5. Conclusions 

The proposed method is competent to calculate the Yule Walker equation simply and fast .Obtained result showed good 

accuracy. Comparison of proposed method result matched for all of the modal shapes frequencies and modal damping. 

The margins of the discrepancy were small. A unified procedure has been presented in this paper. The proposed method 

has been applied to real bridge monitoring but due to the space limit could not integrated in this paper thus the results 

for real bridge ambient vibration test will be presented at the time of presentation. 
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Fig. 4 Estimated modal damping 

 

 

Fig.5 Estimated mode shapes 

 
Analytical

value Mean value Percentage of
error

Standard
deviation

Coefficient
of variation

Analytical
value Mean value Percentage of

error
Standard
deviation

Coefficient
of variation

1st 1.749 1.802 3.03 0.0329 1.8234 0.02 0.032 60.00 0.0163 49.4033
2nd 2.893 2.921 0.97 0.0276 0.9432 0.02 0.015 25.00 0.007 45.4519
3rd 5.69 5.647 0.76 0.0439 0.7768 0.02 0.021 5.00 0.0078 37.4129
4th 7.375 7.399 0.33 0.0597 0.8065 0.02 0.025 25.00 0.0094 36.4893
5th 9.416 9.434 0.19 0.0577 0.612 0.02 0.018 10.00 0.0049 28.1424
6th 11.179 11.123 0.50 0.0612 0.5505 0.02 0.021 5.00 0.0064 30.3838
7th 14.236 14.225 0.08 0.0814 0.5723 0.02 0.023 15.00 0.0054 23.4892
8th 15.615 15.523 0.59 0.0776 0.5001 0.02 0.021 5.00 0.0051 23.8273

Table 3.  Dynamic characteristics estimation  simulation result for Langer bridge .

Mode
order

Frequency Modal damping

土木学会第62回年次学術講演会(平成19年9月)

-168-

1-084


